Harnack Inequality and No-Arbitrage Analysis

被引:4
|
作者
Tang, Wanxiao [1 ]
Zhou, Fanchao [1 ]
Zhao, Peibiao [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Math, Nanjing 210094, Jiangsu, Peoples R China
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 10期
基金
中国国家自然科学基金;
关键词
Harnack inequality; fundamental solution; no arbitrage; EQUATIONS;
D O I
10.3390/sym10100517
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The present paper attains a Harnack inequality for the option pricing (or Kolmogorov) equation with gradient estimate arguments. We then perform a no-arbitrage analysis of a financial market.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Nonparametric Option Pricing with No-Arbitrage Constraints
    Birke, Melanie
    Pilz, Kay F.
    JOURNAL OF FINANCIAL ECONOMETRICS, 2009, 7 (02) : 53 - 76
  • [42] No-Arbitrage and Hedging with Liquid American Options
    Bayraktar, Erhan
    Zhou, Zhou
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (02) : 468 - 486
  • [43] NO-ARBITRAGE IN A NUMERAIRE-INDEPENDENT MODELING FRAMEWORK
    Herdegen, Martin
    MATHEMATICAL FINANCE, 2017, 27 (02) : 568 - 603
  • [44] Equilibrium asset prices and no-arbitrage with portfolio constraints
    Detemple, J
    Murthy, S
    REVIEW OF FINANCIAL STUDIES, 1997, 10 (04): : 1133 - 1174
  • [45] Stability of no-arbitrage property under model uncertainty
    Ostrovski, Vladimir
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (01) : 89 - 92
  • [46] FRACTIONAL TERM STRUCTURE MODELS: NO-ARBITRAGE AND CONSISTENCY
    Ohashi, Alberto
    ANNALS OF APPLIED PROBABILITY, 2009, 19 (04): : 1553 - 1580
  • [47] No-arbitrage with multiple-priors in discrete time
    Blanchard, Romain
    Carassus, Laurence
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (11) : 6657 - 6688
  • [48] No-arbitrage criteria for financial markets with efficient friction
    Yuri Kabanov
    Miklós Rásonyi
    Christophe Stricker
    Finance and Stochastics, 2002, 6 : 371 - 382
  • [49] No-arbitrage bounds for the forward smile given marginals
    Badikov, Sergey
    Jacquier, Antoine
    Liu, Daphne Qing
    Roome, Patrick
    QUANTITATIVE FINANCE, 2017, 17 (08) : 1243 - 1256
  • [50] No-arbitrage, leverage and completeness in a fractional volatility model
    Mendes, R. Vilela
    Oliveira, M. J.
    Rodrigues, A. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 419 : 470 - 478