Analysis of optimal velocity model with explicit delay

被引:342
|
作者
Bando, M [1 ]
Hasebe, K
Nakanishi, K
Nakayama, A
机构
[1] Aichi Univ, Div Phys, Aichi 47002, Japan
[2] Nagoya Univ, Dept Phys, Nagoya, Aichi 4640814, Japan
[3] Gifu Keizai Univ, Gifu 5038550, Japan
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 05期
关键词
D O I
10.1103/PhysRevE.58.5429
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the optimal velocity model (OVM) with explicit delay. The properties of congestion and the delay time of car motion are investigated by analytical and numerical methods. It is shown that the small explicit delay time has almost no effects. In the case of the large explicit delay time, a new phase of congestion pattern of OVM seems to appear. [S1063-651X(98)12410-8].
引用
收藏
页码:5429 / 5435
页数:7
相关论文
共 50 条
  • [41] A review analysis of optimal velocity models
    Lazar H.
    Rhoulami K.
    Rahmani D.
    Lazar, Hajar (hajar.lazar@gmail.com), 2016, Budapest University of Technology and Economics (44): : 123 - 131
  • [42] Stability analysis of explicit exponential integrators for delay differential equations
    Zhao, Jingjun
    Zhan, Rui
    Ostermann, Alexander
    APPLIED NUMERICAL MATHEMATICS, 2016, 109 : 96 - 108
  • [43] Optimal Control of a Cancer Cell Model with Delay
    Collins, C.
    Fister, K. R.
    Williams, M.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (03) : 63 - 75
  • [44] OPTIMAL HARVESTING OF A STOCHASTIC DELAY COMPETITIVE MODEL
    Liu, Meng
    Bai, Chuanzhi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04): : 1493 - 1508
  • [45] OPTIMAL WIRESIZING UNDER ELMORE DELAY MODEL
    CONG, JJS
    LEUNG, KS
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1995, 14 (03) : 321 - 336
  • [46] Optimal model reduction of stable delay systems
    Zhang, LQ
    Lam, J
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 157 - 161
  • [47] A Stabilizing Controller for the Modified Optimal Velocity Model
    Manjunath, Sreelakshmi
    Kamath, Gopal Krishna
    IFAC PAPERSONLINE, 2019, 52 (18): : 1 - 6
  • [48] Understanding "synchronized flow" by optimal velocity model
    Sugiyama, Y
    Nakayama, A
    MODELING OF COMPLEX SYSTEMS, 2003, 661 : 111 - 115
  • [49] Solvability and metastability of the stochastic optimal velocity model
    Kanai, Masahiro
    Nishinari, Katsuhiro
    Tokihiro, Tetsuji
    TRAFFIC AND GRANULAR FLOW ' 05, 2007, : 595 - +
  • [50] Generalized optimal velocity model for traffic flow
    Sawada, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (01): : 1 - 12