Analysis of thermal properties of GaInN light-emitting diodes and laser diodes

被引:50
|
作者
Shan, Qifeng [1 ]
Dai, Qi
Chhajed, Sameer
Cho, Jaehee
Schubert, E. Fred
机构
[1] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
关键词
JUNCTION;
D O I
10.1063/1.3493117
中图分类号
O59 [应用物理学];
学科分类号
摘要
The thermal properties, including thermal time constants, of GaInN light-emitting diodes (LEDs) and laser diodes (LDs) are analyzed. The thermal properties of unpackaged LED chips are described by a single time constant, that is, the thermal time constant associated with the substrate. For unpackaged LD chips, we introduce a heat-spreading volume. The thermal properties of unpackaged LD chips are described by a single time constant, that is, the thermal time constant associated with the heat spreading volume. Furthermore, we develop a multistage RthCth thermal model for packaged LEDs. The model shows that the transient response of the junction temperature of LEDs can be described by a multiexponential function. Each time constant of this function is approximately the product of a thermal resistance, R-th, and a thermal capacitance, C-th. The transient response of the junction temperature is measured for a high-power flip-chip LED, emitting at 395 nm, by the forward-voltage method. A two stage RthCth model is used to analyze the thermal properties of the packaged LED. Two time constants, 2.72 ms and 18.8 ms are extracted from the junction temperature decay measurement and attributed to the thermal time constant of the LED GaInN/sapphire chip and LED Si submount, respectively. (C) 2010 American Institute of Physics. [doi:10.1063/1.3493117]
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Measurement of the Thermal Impedance of Light-Emitting Diodes and Light-Emitting Diode Matrices
    V. I. Smirnov
    V. A. Sergeev
    A. A. Gavrikov
    Measurement Techniques, 2017, 60 : 46 - 51
  • [42] MEASUREMENT OF THE THERMAL IMPEDANCE OF LIGHT-EMITTING DIODES AND LIGHT-EMITTING DIODE MATRICES
    Smirnov, V. I.
    Sergeev, V. A.
    Gavrikov, A. A.
    MEASUREMENT TECHNIQUES, 2017, 60 (01) : 46 - 51
  • [43] Photoinduced improvement of the properties of light-emitting diodes
    Ovcharov A.T.
    Vilisov A.A.
    Shirokova E.V.
    Russian Physics Journal, 1997, 40 (8) : 810 - 814
  • [44] Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation
    Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States
    不详
    不详
    不详
    不详
    不详
    不详
    Song, J. (jsong8@miami.edu), 1600, American Institute of Physics Inc. (113):
  • [45] Electrical properties of polymeric light-emitting diodes
    Santos, LF
    Bianchi, RF
    Faria, RM
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 338 : 590 - 594
  • [46] REACTIVE PROPERTIES OF GAP LIGHT-EMITTING DIODES
    ABDULLAEV, GB
    ISKENDER.ZA
    ALIKHANOVA, SA
    DZHAFAROVA, EA
    AKHUNDOV, MR
    KASIMOV, KI
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1973, 6 (11): : 1822 - 1823
  • [47] Thermal influences on optical properties of light-emitting diodes:: a semiempirical model
    García-Botella, A
    Fernández-Balbuena, AA
    Vázquez-Moliní, D
    Bernabeu, E
    APPLIED OPTICS, 2001, 40 (04) : 533 - 537
  • [48] Thermal influences on optical properties of light-emitting diodes: A semiempirical model
    García-Botella, Angel
    Fernández-Balbuena, Antonio Alvarez
    Vázquez-Moliní, Daniel
    Bernabeu, Eusebio
    2001, Optical Society of America (OSA) (40):
  • [49] Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation
    Li, Yuhang
    Shi, Yan
    Song, Jizhou
    Lu, Chaofeng
    Kim, Tae-il
    Rogers, John A.
    Huang, Yonggang
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (14)
  • [50] Present status of InGaN-based light-emitting diodes and laser diodes
    Nagahama, S
    Iwasa, N
    Senoh, M
    Matsushita, T
    Sugimoto, Y
    Kiyoku, H
    Kozaki, T
    Sano, M
    Matsumura, H
    Umemoto, H
    Chocho, K
    Mukai, T
    PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON NITRIDE SEMICONDUCTORS, 2000, 1 : 899 - 902