Anomalous Impact in Reaction-Diffusion Financial Models

被引:26
|
作者
Mastromatteo, I. [1 ]
Toth, B. [2 ]
Bouchaud, J-P. [2 ]
机构
[1] Ecole Polytech, Ctr Math Appl, CNRS, UMR7641, F-91128 Palaiseau, France
[2] Capital Fund Management, F-75007 Paris, France
关键词
2-SPECIES ANNIHILATION; REACTION FRONT; ONE-DIMENSION; STEADY-STATE; FLUCTUATIONS; MARKET;
D O I
10.1103/PhysRevLett.113.268701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the reaction-diffusion model A + B -> empty set in order to study the impact of an excess of A (or B) at the reaction front. We provide an exact solution of the model, which shows that the linear response breaks down: the average displacement of the reaction front grows as the square root of the imbalance. We argue that this model provides a highly simplified but generic framework to understand the square-root impact of large orders in financial markets.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] ANOMALOUS INVASION SPEED IN A SYSTEM OF COUPLED REACTION-DIFFUSION EQUATIONS
    Faye, Gregory
    Peltier, Gwenael
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (02) : 441 - 461
  • [42] Asymptotic scaling in a model class of anomalous reaction-diffusion equations
    Gaeta, G
    Mancinelli, R
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (04) : 550 - 566
  • [43] Local Activity in Reaction-Diffusion CNN Models
    Slavova, Angela
    SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159
  • [44] Parallel solution of cardiac reaction-diffusion models
    Pavarino, LF
    Colli-Franzone, P
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 669 - 676
  • [45] Reaction-diffusion models in weighted and directed connectomes
    Schmitt, Oliver
    Nitzsche, Christian
    Eipert, Peter
    Prathapan, Vishnu
    Huett, Marc-Thorsten
    Hilgetag, Claus C.
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (10)
  • [46] Dynamics and regularity for non-autonomous reaction-diffusion equations with anomalous diffusion
    Yan, Xingjie
    Wang, Shubin
    Yang, Xin-Guang
    Zhang, Junzhao
    ASYMPTOTIC ANALYSIS, 2023, 132 (3-4) : 495 - 517
  • [47] Excitable front geometry in reaction-diffusion systems with anomalous dispersion
    Steinbock, O
    PHYSICAL REVIEW LETTERS, 2002, 88 (22) : 4 - 228302
  • [48] Asymptotic Scaling in a Model Class of Anomalous Reaction-Diffusion Equations
    Giuseppe Gaeta
    Rosaria Mancinelli
    Journal of Nonlinear Mathematical Physics, 2005, 12 : 550 - 566
  • [49] Blow Up of Solutions of a Nonlinear Anomalous Reaction-Diffusion System
    Perez, Aroldo
    Villa-Morales, Jose
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (04): : 791 - 802
  • [50] A Comparison of Bimolecular Reaction Models for Stochastic Reaction-Diffusion Systems
    Agbanusi, I. C.
    Isaacson, S. A.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2014, 76 (04) : 922 - 946