Isomorphisms of connected Cayley digraphs

被引:10
|
作者
Li, CH [1 ]
机构
[1] Univ Western Australia, Dept Math, Nedlands, WA 6907, Australia
关键词
D O I
10.1007/PL00007218
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and let Cay(G, S) be a Cayley graph of G. The graph Cay(G, S) is called a CI-graph of G if, for any T subset of G, S = T-alpha for some alpha epsilon Aut(G) only when Cay(G, S) congruent to Cay(G, T). In this paper, we study the isomorphism problem of connected Cayley graphs: to determine the groups G (or the types of Cayley graphs for a given group G) for which all connected Cayley graphs for G are CI-graphs.
引用
收藏
页码:37 / 44
页数:8
相关论文
共 50 条
  • [21] Isomorphisms of finite Cayley graphs
    Li, CH
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 56 (01) : 169 - 172
  • [22] Isomorphisms of generalized Cayley graphs
    Yang, Xu
    Liu, Weijun
    Feng, Lihua
    ARS MATHEMATICA CONTEMPORANEA, 2018, 15 (02) : 407 - 424
  • [23] On isomorphisms of finite Cayley graphs
    Conder, M
    Li, CH
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (08) : 911 - 919
  • [24] On Hamiltonian Property of Cayley Digraphs
    Duan, Fang
    Huang, Qiong-xiang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (02): : 547 - 556
  • [25] A family of nonnormal Cayley digraphs
    Feng, YQ
    Wang, DJ
    Chen, JL
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (01): : 147 - 152
  • [26] Automorphism groups of Cayley digraphs
    Feng, Yan-Quan
    Lu, Zai-Ping
    Xu, Ming-Yo
    APPLICATIONS OF GROUP THEORY TO COMBINATORICS, 2008, : 13 - +
  • [27] The partition dimension of Cayley digraphs
    Fehr M.
    Gosselin S.
    Oellermann O.R.
    aequationes mathematicae, 2006, 71 (1-2) : 1 - 18
  • [28] A Note on Moore Cayley Digraphs
    Gavrilyuk, Alexander L.
    Hirasaka, Mitsugu
    Kabanov, Vladislav
    GRAPHS AND COMBINATORICS, 2021, 37 (05) : 1509 - 1520
  • [29] Divisible design Cayley digraphs
    Crnkovic, Dean
    Kharaghani, Hadi
    Svob, Andrea
    DISCRETE MATHEMATICS, 2020, 343 (04)
  • [30] A Family of Nonnormal Cayley Digraphs
    Yan Quan FENG
    Dian Jun WANG
    Jing Lin CHEN
    Acta Mathematica Sinica(English Series), 2001, 17 (01) : 147 - 152