Self-Supervised Image Prior Learning with GMM from a Single Noisy Image

被引:2
|
作者
Liu, Haosen [1 ,2 ]
Liu, Xuan [1 ]
Lu, Jiangbo [2 ]
Tan, Shan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan, Peoples R China
[2] SmartMore Corp, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
SPARSE; MODELS;
D O I
10.1109/ICCV48922.2021.00284
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The lack of clean images undermines the practicability of supervised image prior learning methods, of which the training schemes require a large number of clean images. To free image prior learning from the image collection burden, a novel Self-Supervised learning method for Gaussian Mixture Model (SS-GMM) is proposed in this paper. It can simultaneously achieve the noise level estimation and the image prior learning directly from only a single noisy image. This work is derived from our study on eigenvalues of the GMM's covariance matrix. Through statistical experiments and theoretical analysis, we conclude that (1) covariance eigenvalues for clean images hold the sparsity; and that (2) those for noisy images contain sufficient information for noise estimation. The first conclusion inspires us to impose a sparsity constraint on covariance eigenvalues during the learning process to suppress the influence of noise. The second conclusion leads to a self-contained noise estimation module of high accuracy in our proposed method. This module serves to estimate the noise level and automatically determine the specific level of the sparsity constraint. Our final derived method requires only minor modifications to the standard expectation-maximization algorithm. This makes it easy to implement. Very interestingly, the GMM learned via our proposed self-supervised learning method can even achieve better image denoising performance than its supervised counterpart, i.e., the EPLL. Also, it is on par with the state-of-the-art self-supervised deep learning method, i.e., the Self2Self.
引用
收藏
页码:2825 / 2834
页数:10
相关论文
共 50 条
  • [41] A self-supervised learning of semantic feature consistency for image clustering
    Chen, Junfen
    Han, Jie
    Xie, Bojun
    Li, Nana
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 8651 - 8661
  • [42] Self-Supervised Image Quality Assessment through Active Learning
    Yu, Yunchao
    Sang, Qingbing
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 315 - 319
  • [43] Efficient Medical Image Assessment via Self-supervised Learning
    Huang, Chun-Yin
    Lei, Qi
    Li, Xiaoxiao
    DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS (DALI 2022), 2022, 13567 : 102 - 111
  • [44] Self-supervised monocular image depth learning and confidence estimation
    Chen, Long
    Tang, Wen
    Wan, Tao Ruan
    John, Nigel W.
    NEUROCOMPUTING, 2020, 381 : 272 - 281
  • [45] Image classification framework based on contrastive self-supervised learning
    Zhao H.-W.
    Zhang J.-R.
    Zhu J.-P.
    Li H.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (08): : 1850 - 1856
  • [46] Object and attribute recognition for product image with self-supervised learning
    Dai, Yong
    Li, Yi
    Sun, Bin
    NEUROCOMPUTING, 2023, 558
  • [47] Self-Supervised Learning With Adaptive Distillation for Hyperspectral Image Classification
    Yue, Jun
    Fang, Leyuan
    Rahmani, Hossein
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [48] NVST Image Denoising Based on Self-Supervised Deep Learning
    Lu Xianwei
    Liu Hui
    Shang Zhenhong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (06)
  • [49] Self-Supervised Image Representation Learning with Geometric Set Consistency
    Chen, Nenglun
    Chu, Lei
    Pan, Hao
    Lu, Yan
    Wang, Wenping
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19270 - 19280
  • [50] Siamese Image Modeling for Self-Supervised Vision Representation Learning
    Tao, Chenxin
    Zhu, Xizhou
    Su, Weijie
    Huang, Gao
    Li, Bin
    Zhou, Jie
    Qiao, Yu
    Wang, Xiaogang
    Dai, Jifeng
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 2132 - 2141