Homer1a Attenuates Endoplasmic Reticulum Stress-Induced Mitochondrial Stress After Ischemic Reperfusion Injury by Inhibiting the PERK Pathway

被引:31
|
作者
Wei, Jialiang [1 ,2 ]
Wu, Xiuquan [1 ]
Luo, Peng [1 ]
Yue, Kangyi [1 ]
Yu, Yang [1 ]
Pu, Jingnan [1 ]
Zhang, Lei [1 ]
Dai, Shuhui [1 ]
Han, Donghui [3 ]
Fei, Zhou [1 ]
机构
[1] Fourth Mil Med Univ, Xijing Hosp, Dept Neurosurg, Xian, Shaanxi, Peoples R China
[2] Fourth Mil Med Univ, Dept Hlth Serv, Xian, Shaanxi, Peoples R China
[3] Fourth Mil Med Univ, Dept Urol, Xijing Hosp, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
ischemic stroke; homer1a; mitochondrial dysfunction; endoplasmic reticulum stress; PERK kinase; ER STRESS; INDUCED APOPTOSIS; OXIDATIVE STRESS; GENE-EXPRESSION; CELL-SURVIVAL; UP-REGULATION; ACTIVATION; AUTOPHAGY; HEPATOCYTES; DYSFUNCTION;
D O I
10.3389/fncel.2019.00101
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Homer1a is the short form of a scaffold protein that plays a protective role in many forms of stress. However, the role of Homer1a in cerebral ischemia/reperfusion (I/R) injury and its potential mechanism is still unknown. In this study, we found that Homer1a was upregulated by oxygen and glucose deprivation (OGD) and that overexpression of Homer1a alleviated OGD-induced lactate dehydrogenase (LDH) release and cell death in cultured cortical neurons. After OGD treatment, the overexpression of Homer1a preserved mitochondrial function, as evidenced by less cytochrome c release, less reactive oxygen species (ROS) production, less ATP and mitochondrial membrane potential (MMP) loss, less caspase-9 activation, and inhibition of endoplasmic reticulum (ER) stress confirmed by the decreased expression of phosphate-PKR-like ER Kinase (p-PERK)/PERK and phosphate-inositol-requiring enzyme 1 (p-IRE1)/IRE1 and immunofluorescence (IF) staining. In addition, mitochondrial protection of Homer1a was blocked by the ER stress activator Tunicamycin (TM) with a re-escalated ROS level, increasing ATP and MMP loss. Furthermore, Homer1a overexpression-induced mitochondrial stress attenuation was significantly reversed by activating the PERK pathway with TM and p-IRE1 inhibitor 3,5-dibromosalicylaldehyde (DBSA), as evidenced by increased cytochrome c release, increased ATP loss and a higher ROS level. However, activating the IRE1 pathway with TM and p-PERK inhibitor GSK2656157 showed little change in cytochrome c release and exhibited a moderate upgrade of ATP loss and ROS production in neurons. In summary, these findings demonstrated that Homer1a protects against OGD-induced injury by preserving mitochondrial function through inhibiting the PERK pathway. Our finding may reveal a promising target of protecting neurons from cerebral I/R injury.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] The PERK/Nrf2 pathway mediates endoplasmic reticulum stress-induced injury by upregulating endoplasmic reticulophagy in H9c2 cardiomyoblasts
    Tao, Tianqi
    Wang, Jianli
    Wang, Xiaoreng
    Wang, You
    Mao, Huimin
    Liu, Xiuhua
    LIFE SCIENCES, 2019, 237
  • [32] Naltrexone attenuates endoplasmic reticulum stress induced hepatic injury in mice
    Moslehi, A.
    Nabavizadeh, F.
    Dehpou, A. R.
    Tavanga, S. M.
    Hassanzadeh, G.
    Zekri, A.
    Nahrevanian, H.
    Sohanaki, H.
    ACTA PHYSIOLOGICA HUNGARICA, 2014, 101 (03) : 341 - 352
  • [33] Dexmedetomidine alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress dependent apoptosis through the PERK-CHOP-Caspase-11 pathway
    Liu, Chong
    Fu, Qiang
    Mu, Rong
    Wang, Fang
    Zhou, Chunjing
    Zhang, Li
    Yu, Baojin
    Zhang, Yang
    Fang, Tao
    Tian, Fengshi
    BRAIN RESEARCH, 2018, 1701 : 246 - 254
  • [34] Enalapril attenuates endoplasmic reticulum stress and mitochondrial injury induced by myocardial infarction via activation of the TAK1/NFAT pathway in mice
    Rong, Xing
    Ge, Donghui
    Yu, Lili
    Li, Lei
    Chu, Maoping
    Lv, Haitao
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2020, 19 (02) : 972 - 980
  • [35] Monosialotetrahexosy-1 ganglioside attenuates diabetes-associated cerebral ischemia/reperfusion injury through suppression of the endoplasmic reticulum stress-induced apoptosis
    Su, Danying
    Ma, Jing
    Yang, Jiachen
    Kang, Yingying
    Lv, Manhua
    Li, Yang
    JOURNAL OF CLINICAL NEUROSCIENCE, 2017, 41 : 54 - 59
  • [36] PTTG1 alleviates acute alcoholic liver injury by inhibiting endoplasmic reticulum stress-induced hepatocyte pyroptosis
    Tien, Shiuan
    Zhou, Haoxiong
    Zhou, Qi
    Liu, Huiling
    Wu, Bin
    Guo, Yunwei
    LIVER INTERNATIONAL, 2023, 43 (04) : 840 - 854
  • [37] Atorvastatin ameliorates myocardial ischemia/reperfusion injury through attenuation of endoplasmic reticulum stress-induced apoptosis
    Wu, Hui
    Tang, Qizhu
    Yang, Jun
    Ding, Jiawang
    Ye, Ming
    Dong, Wusong
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2014, 7 (12): : 4915 - 4923
  • [38] Trichostatin A Ameliorates Myocardial Ischemia/Reperfusion Injury Through Inhibition of Endoplasmic Reticulum Stress-induced Apoptosis
    Yu, Ling
    Lu, Mengmeng
    Wang, Ping
    Chen, Xia
    ARCHIVES OF MEDICAL RESEARCH, 2012, 43 (03) : 190 - 196
  • [39] cFLIPL Alleviates Myocardial Ischemia-Reperfusion Injury by Inhibiting Endoplasmic Reticulum Stress
    Yun Zhao Li
    Hui Wu
    Di Liu
    Jun Yang
    Jian Yang
    Jia Wang Ding
    Gang Zhou
    Jing Zhang
    Dong Zhang
    Cardiovascular Drugs and Therapy, 2023, 37 : 225 - 238
  • [40] cFLIPL Alleviates Myocardial Ischemia-Reperfusion Injury by Inhibiting Endoplasmic Reticulum Stress
    Li, Yun Zhao
    Wu, Hui
    Liu, Di
    Yang, Jun
    Yang, Jian
    Ding, Jia Wang
    Zhou, Gang
    Zhang, Jing
    Zhang, Dong
    CARDIOVASCULAR DRUGS AND THERAPY, 2023, 37 (02) : 225 - 238