Jump and variational inequalities for hypersingular integrals with rough kernels

被引:2
|
作者
Chen, Yanping [1 ]
Gong, Zhenbing [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
关键词
Jump and variational inequalities; Hypersingular integrals; Rough kernel; WEIGHTED VARIATION INEQUALITIES; MAXIMAL SINGULAR-INTEGRALS; L-P BOUNDS; DIFFERENTIAL-OPERATORS; RIESZ TRANSFORM; BOUNDEDNESS; OSCILLATION;
D O I
10.1016/j.jmaa.2022.126120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the jump function and variation of hypersingular integral operators with rough kernels T-Omega,T- (alpha,epsilon)f(x) = integral(vertical bar y vertical bar>epsilon) Omega(y)/vertical bar y vertical bar(n+alpha) f(x - y) dy, where alpha >= 0, Omega is an integrable function on the unit sphere Sn-1 satisfying certain cancellation conditions. More precisely, we first show that for 1 < p < infinity, the jump function and variation of the family of truncated hypersingular integrals {T-Omega,T- (alpha,epsilon)}(epsilon>0) extends to a bounded operator from the Sobolev space L-alpha(p) to the Lebesgue space L-p with Omega belonging to the Hardy space H-q(Sn-1) where q = n-1/n-1+alpha, which gives a positive answer to an open problem proposed by Ding-Hong-Liu [15]. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Commutator of Hypersingular Integral with Rough Kernels on Sobolev Spaces
    Yan Ping CHEN
    Yong DING
    Xin Xia WANG
    Acta Mathematica Sinica,English Series, 2013, (06) : 1043 - 1054
  • [22] Commutator of hypersingular integral with rough kernels on Sobolev spaces
    Yan Ping Chen
    Yong Ding
    Xin Xia Wang
    Acta Mathematica Sinica, English Series, 2013, 29 : 1043 - 1054
  • [23] KOLMOGOROV TYPE INEQUALITIES FOR HYPERSINGULAR INTEGRALS WITH HOMOGENEOUS CHARACTERISTIC
    Babenko, Vladislav F.
    Churilova, Mariya S.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2007, 1 (01): : 66 - 77
  • [24] The boundedness for commutators of a class of maximal hypersingular integrals with variable kernels
    Chen, Yanping
    Ding, Yong
    Li, Ran
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (15) : 4918 - 4940
  • [25] An extension of Marcinkiewicz integrals with rough kernels
    Wu, Huoxiong
    Wu, Lin
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (03) : 789 - 808
  • [26] JUMP RELATIONS OF CERTAIN HYPERSINGULAR STOKES KERNELS ON REGULAR SURFACES
    Fikl, Alexandru
    Bodony, Daniel J.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (05) : 2226 - 2248
  • [27] Efficient methods for highly oscillatory integrals with weakly singular and hypersingular kernels
    Li, Bin
    Xiang, Shuhuang
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
  • [28] Approximate Methods for Calculating Singular and Hypersingular Integrals with Rapidly Oscillating Kernels
    Boykov, Ilya
    Roudnev, Vladimir
    Boykova, Alla
    AXIOMS, 2022, 11 (04)
  • [29] Rough bilinear fractional integrals with variable kernels
    Jiecheng Chen
    Dashan Fan
    Frontiers of Mathematics in China, 2010, 5 : 369 - 378
  • [30] A note on maximal singular integrals with rough kernels
    Xiao Zhang
    Feng Liu
    Journal of Inequalities and Applications, 2020