UNIFIED DEGENERATE CENTRAL BELL POLYNOMIALS

被引:0
|
作者
Acikgoz, Mehmet [1 ]
Duran, Ugur [2 ]
机构
[1] Gaziantep Univ, Fac Sci & Arts, Dept Math, TR-27310 Gaziantep, Turkey
[2] Iskenderun Tech Univ, Fac Engn & Nat Sci, Dept Basic Concepts Engn, TR-31200 Antakya, Turkey
来源
JOURNAL OF MATHEMATICAL ANALYSIS | 2020年 / 11卷 / 02期
关键词
Central Bell polynomials; central factorial numbers; degenerate central Bell polynomials; Stirling numbers of the first kind; special numbers; special polynomials; BERNOULLI; NUMBERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we firstly consider extended degenerate central factorial numbers of the second kind and provide some properties of them. We then introduce unified degenerate central Bell polynomials and numbers and investigate many relations and formulas including summation formula, explicit formula and derivative property. Moreover, we derive several correlations for the fully degenerate central Bell polynomials associated with the degenerate Bernstein polynomials and the degenerate Bernoulli, Euler and Genocchi numbers.
引用
收藏
页码:18 / 33
页数:16
相关论文
共 50 条
  • [31] Some identities related to degenerate r-Bell and degenerate Fubini polynomials
    Kim, Taekyun
    San Kim, Dae
    Kwon, Jongkyum
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2023, 31 (01):
  • [32] Degenerate r-Bell Polynomials Arising from Degenerate Normal Ordering
    Kim, Taekyun
    Kim, Dae San
    Kim, Hye Kyung
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [33] On generalized degenerate Gould-Hopper based fully degenerate Bell polynomials
    Duran, Ugur
    Acikgoz, Mehmet
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 21 (03): : 243 - 257
  • [34] A Note on Central Bell Numbers and Polynomials
    Kim, T.
    Kim, D. S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2020, 27 (01) : 76 - 81
  • [35] A Note on Central Bell Numbers and Polynomials
    T. Kim
    D. S. Kim
    Russian Journal of Mathematical Physics, 2020, 27 : 76 - 81
  • [36] Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus
    Taekyun Kim
    Dae San Kim
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [37] Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus
    Kim, Taekyun
    Kim, Dae San
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [38] Some new formulas of complete and incomplete degenerate Bell polynomials
    Kim, Dae San
    Kim, Taekyun
    Lee, Si-Hyeon
    Park, Jin-Woo
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [39] Some new formulas of complete and incomplete degenerate Bell polynomials
    Dae San Kim
    Taekyun Kim
    Si-Hyeon Lee
    Jin-Woo Park
    Advances in Difference Equations, 2021
  • [40] A Note on Some Identities of New Type Degenerate Bell Polynomials
    Kim, Taekyun
    Kim, Dae San
    Lee, Hyunseok
    Kwon, Jongkyum
    MATHEMATICS, 2019, 7 (11)