Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC

被引:0
|
作者
Cong, Yulai [1 ]
Chen, Bo [1 ]
Liu, Hongwei [1 ]
Zhou, Mingyuan [2 ]
机构
[1] Xidian Univ, Collaborat Innovat Ctr Informat Sensing & Underst, Natl Lab Radar Signal Proc, Xian, Peoples R China
[2] Univ Texas Austin, McCombs Sch Business, Austin, TX 78712 USA
关键词
COUNT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is challenging to develop stochastic gradient based scalable inference for deep discrete latent variable models (LVMs), due to the difficulties in not only computing the gradients, but also adapting the step sizes to different latent factors and hidden layers. For the Poisson gamma belief network (PGBN), a recently proposed deep discrete LVM, we derive an alternative representation that is referred to as deep latent Dirichlet allocation (DLDA). Exploiting data augmentation and marginalization techniques, we derive a block-diagonal Fisher information matrix and its inverse for the simplex-constrained global model parameters of DLDA. Exploiting that Fisher information matrix with stochastic gradient MCMC, we present topic-layer-adaptive stochastic gradient Riemannian (TLASGR) MCMC that jointly learns simplex-constrained global parameters across all layers and topics, with topic and layer specific learning rates. State-of-the-art results are demonstrated on big data sets.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Sentiment Analysis Using Latent Dirichlet Allocation and Topic Polarity Wordcloud Visualization
    Bashri, Mohammad F. A.
    Kusumaningrum, Retno
    2017 5TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOIC7), 2017,
  • [42] Topic-Based User Segmentation for Online Advertising with Latent Dirichlet Allocation
    Tu, Songgao
    Lu, Chaojun
    ADVANCED DATA MINING AND APPLICATIONS (ADMA 2010), PT II, 2010, 6441 : 259 - 269
  • [43] HDPauthor: A New Hybrid Author-Topic Model using Latent Dirichlet Allocation and Hierarchical Dirichlet Processes
    Yang, Ming
    Hsu, Willian H.
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), 2016, : 619 - 624
  • [44] Language Model Adaptation Using Latent Dirichlet Allocation and an Efficient Topic Inference Algorithm
    Heidel, Aaron
    Chang, Hung-an
    Lee, Lin-shan
    INTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4, 2007, : 1145 - +
  • [45] Topic Model Tutorial A basic introduction on latent Dirichlet allocation and extensions for web scientists
    Kling, Christoph Carl
    Posch, Lisa
    Bleier, Arnim
    Dietz, Laura
    PROCEEDINGS OF THE 2016 ACM WEB SCIENCE CONFERENCE (WEBSCI'16), 2016, : 10 - 10
  • [46] Generating and Visualizing Topic Hierarchies from Microblogs : An Iterative Latent Dirichlet Allocation Approach
    Anoop, V. S.
    Sankar, Prem C.
    Asharaf, S.
    Alessandro, Zonin
    2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2015, : 824 - 828
  • [47] Topic Modeling of the Pakistani Economy in English Newspapers via Latent Dirichlet Allocation (LDA)
    Ahmed, Fasih
    Nawaz, Muhammad
    Jadoon, Aisha
    SAGE OPEN, 2022, 12 (01):
  • [48] Public perceptions of digital fashion: An analysis of sentiment and Latent Dirichlet Allocation topic modeling
    Zou, Yixin
    Luh, Ding-Bang
    Lu, Shizhu
    FRONTIERS IN PSYCHOLOGY, 2022, 13
  • [49] Local-class-shared-topic latent Dirichlet allocation based scene classification
    Huang, Chao
    Luo, Wang
    Xie, Yurui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (14) : 15661 - 15679
  • [50] Topic detection and tracking for conversational content by using conceptual dynamic latent Dirichlet allocation
    Yeh, Jui-Feng
    Tan, Yi-Shan
    Lee, Chen-Hsien
    NEUROCOMPUTING, 2016, 216 : 310 - 318