Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC

被引:0
|
作者
Cong, Yulai [1 ]
Chen, Bo [1 ]
Liu, Hongwei [1 ]
Zhou, Mingyuan [2 ]
机构
[1] Xidian Univ, Collaborat Innovat Ctr Informat Sensing & Underst, Natl Lab Radar Signal Proc, Xian, Peoples R China
[2] Univ Texas Austin, McCombs Sch Business, Austin, TX 78712 USA
关键词
COUNT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is challenging to develop stochastic gradient based scalable inference for deep discrete latent variable models (LVMs), due to the difficulties in not only computing the gradients, but also adapting the step sizes to different latent factors and hidden layers. For the Poisson gamma belief network (PGBN), a recently proposed deep discrete LVM, we derive an alternative representation that is referred to as deep latent Dirichlet allocation (DLDA). Exploiting data augmentation and marginalization techniques, we derive a block-diagonal Fisher information matrix and its inverse for the simplex-constrained global model parameters of DLDA. Exploiting that Fisher information matrix with stochastic gradient MCMC, we present topic-layer-adaptive stochastic gradient Riemannian (TLASGR) MCMC that jointly learns simplex-constrained global parameters across all layers and topics, with topic and layer specific learning rates. State-of-the-art results are demonstrated on big data sets.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Simple Stochastic Gradient Variational Bayes for Latent Dirichlet Allocation
    Masada, Tomonari
    Takasu, Atsuhiro
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2016, PT IV, 2016, 9789 : 232 - 245
  • [2] Topic Selection in Latent Dirichlet Allocation
    Wang, Biao
    Liu, Zelong
    Li, Maozhen
    Liu, Yang
    Qi, Man
    2014 11TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2014, : 756 - 760
  • [3] Topic Modeling Using Latent Dirichlet allocation: A Survey
    Chauhan, Uttam
    Shah, Apurva
    ACM COMPUTING SURVEYS, 2021, 54 (07)
  • [4] A Hybrid Latent Dirichlet Allocation Approach for Topic Classification
    Hsu, Chi-I
    Chiu, Chaochang
    2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2017, : 312 - 315
  • [5] Semantic latent dirichlet allocation for automatic topic extraction
    Bhutada, Sunil
    Balaram, V. V. S. S. S.
    Bulusu, Vishnu Vardhan
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2016, 37 (03): : 449 - 469
  • [6] Using Latent Dirichlet Allocation for Topic Modelling in Twitter
    Ostrowski, David Alfred
    2015 IEEE 9TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2015, : 493 - 497
  • [7] Topic Model Allocation of Conversational Dialogue Records by Latent Dirichlet Allocation
    Yeh, Jui-Feng
    Lee, Chen-Hsien
    Tan, Yi-Shiuan
    Yu, Liang-Chih
    2014 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2014,
  • [8] Topic modeling for expert finding using latent Dirichlet allocation
    Momtazi, Saeedeh
    Naumann, Felix
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 3 (05) : 346 - 353
  • [9] Approaches to improve preprocessing for Latent Dirichlet Allocation topic modeling
    Zimmermann, Jamie
    Champagne, Lance E.
    Dickens, John M.
    Hazen, Benjamin T.
    DECISION SUPPORT SYSTEMS, 2024, 185
  • [10] Topic modeling with latent Dirichlet allocation for cancer disease posts
    Altintas, Volkan
    Albayrak, Mehmet
    Topal, Kamil
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2021, 36 (04): : 2183 - 2196