Dynamics of a rolling robot

被引:12
|
作者
Ilin, K. I. [1 ]
Moffatt, H. K. [2 ]
Vladimirov, V. A. [1 ,3 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[3] Sultan Qaboos Univ, Dept Math & Stat, Muscat 123, Oman
关键词
nonholonomic system; internal rotor; chaotic rolling; rolling robot;
D O I
10.1073/pnas.1713685114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Equations describing the rolling of a spherical ball on a horizontal surface are obtained, the motion being activated by an internal rotor driven by a battery mechanism. The rotor is modeled as a point mass mounted inside a spherical shell and caused to move in a prescribed circular orbit relative to the shell. The system is described in terms of four independent dimensionless parameters. The equations governing the angular momentum of the ball relative to the point of contact with the plane constitute a six-dimensional, nonholonomic, nonautonomous dynamical system with cubic nonlinearity. This system is decoupled from a subsidiary system that describes the trajectories of the center of the ball. Numerical integration of these equations for prescribed values of the parameters and initial conditions reveals a tendency toward chaotic behavior as the radius of the circular orbit of the point mass increases (other parameters being held constant). It is further shown that there is a range of values of the initial angular velocity of the shell for which chaotic trajectories are realized while contact between the shell and the plane is maintained. The predicted behavior has been observed in our experiments.
引用
收藏
页码:12858 / 12863
页数:6
相关论文
共 50 条
  • [41] Studies on lateral rolling locomotion of a snake robot
    Chen, L
    Wang, YC
    Ma, SG
    Li, B
    2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 5070 - 5074
  • [42] Rolling Resistance Model and Control of Spherical Robot
    Kilin, Alexander A.
    Karavaev, Yury L.
    Ivanova, Tatiana B.
    ROBOTICS FOR SUSTAINABLE FUTURE, CLAWAR 2021, 2022, 324 : 396 - 407
  • [43] Geometric Kinematic Control of a Spherical Rolling Robot
    Tomoki Ohsawa
    Journal of Nonlinear Science, 2020, 30 : 67 - 91
  • [44] Design and Control of a Miniature Rolling Robot for Entertainment
    Lin, Kewei
    Liao, Yajun
    Guan, Yisheng
    Yang, Yufeng
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2016, : 1826 - 1831
  • [45] Nonlinear optimal control for a spherical rolling robot
    Rigatos, G.
    Busawon, K.
    Pomares, J.
    Abbaszadeh, M.
    INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2019, 3 (02) : 221 - 237
  • [46] Nonlinear optimal control for a spherical rolling robot
    G. Rigatos
    K. Busawon
    J. Pomares
    M. Abbaszadeh
    International Journal of Intelligent Robotics and Applications, 2019, 3 : 221 - 237
  • [47] Robot Finger Control for Rolling on Curved Surfaces
    Droukas, Leonidas
    Rovithakis, George A.
    Doulgeri, Zoe
    2016 24TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2016, : 557 - 562
  • [48] DESIGN AND PATH PLANNING FOR A SPHERICAL ROLLING ROBOT
    Lee, Jaeyeon
    Park, Wooram
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 4A, 2014,
  • [49] Insectomorphic robot maneuvering on freely rolling balls
    Golubev, Yu. F.
    Koryanov, V. V.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2016, 55 (01) : 125 - 137
  • [50] On the dynamics of transporting rolling cylinders
    Honein, Theresa E.
    O'Reilly, Oliver M.
    NONLINEAR DYNAMICS, 2025, 113 (07) : 5953 - 5975