AN EXTENSION OF THE LEVY CHARACTERIZATION TO FRACTIONAL BROWNIAN MOTION

被引:6
|
作者
Mishura, Yuliya [1 ]
Valkeila, Esko [2 ]
机构
[1] Kiev Univ, Dept Math, UA-01033 Kiev, Ukraine
[2] Aalto Univ, Dept Math & Syst Anal, FI-00076 Aalto, Finland
来源
ANNALS OF PROBABILITY | 2011年 / 39卷 / 02期
关键词
Fractional Brownian motion; Levy theorem;
D O I
10.1214/10-AOP555
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Assume that X is a continuous square integrable process with zero mean, defined on some probability space (Omega, F, P). The classical characterization due to P. Levy says that X is a Brownian motion if and only if X and X-t(2) - t, t >= 0, are martingales with respect to the intrinsic filtration F-X. We extend this result to fractional Brownian motion.
引用
收藏
页码:439 / 470
页数:32
相关论文
共 50 条
  • [31] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501
  • [32] Trading Fractional Brownian Motion
    Guasoni, Paolo
    Nika, Zsolt
    Rasonyi, Miklos
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (03): : 769 - 789
  • [33] Fractal (fractional) Brownian motion
    Chow, Winston C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02): : 149 - 162
  • [34] On the prediction of fractional Brownian motion
    Gripenberg, G.
    Norros, I.
    1996, (33)
  • [35] Approximations of fractional Brownian motion
    Li, Yuqiang
    Dai, Hongshuai
    BERNOULLI, 2011, 17 (04) : 1195 - 1216
  • [36] On simulating fractional Brownian motion
    Szulga, J
    Molz, F
    HIGH DIMENSIONAL PROBABILITY II, 2000, 47 : 377 - 387
  • [37] Arbitrage with fractional Brownian motion
    Rogers, LCG
    MATHEMATICAL FINANCE, 1997, 7 (01) : 95 - 105
  • [38] Simulation of fractional brownian motion
    Ruemelin, W.
    Proceedings of the IFIP Conference on Fractals in the Fundamental and Applied Sciences, 1991,
  • [39] On the Generalized Fractional Brownian Motion
    Zili M.
    Mathematical Models and Computer Simulations, 2018, 10 (6) : 759 - 769
  • [40] The multiparameter fractional Brownian motion
    Herbin, Erick
    Merzbach, Ely
    MATH EVERYWHERE: DETERMINISTIC AND STOCHASTIC MODELLING IN BIOMEDICINE, ECONOMICS AND INDUSTRY, 2007, : 93 - +