A note on the mean correcting martingale measure for geometric Levy processes

被引:7
|
作者
Yao, Luogen [1 ,2 ]
Yang, Gang [1 ]
Yang, Xiangqun [2 ]
机构
[1] Hunan Business Coll, Dept Informat, Changsha 410205, Hunan, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
关键词
European call option; Equivalent martingale measure; Levy process; Mean correcting martingale measure;
D O I
10.1016/j.aml.2010.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A martingale measure is constructed by using a mean correcting transform for the geometric Levy processes model. It is shown that this measure is the mean correcting martingale measure if and only if, in the Levy process, there exists a continuous Gaussian part. Although this measure cannot be equivalent to a physical probability for a pure jump Levy process, we show that a European call option price under this measure is still arbitrage free. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:593 / 597
页数:5
相关论文
共 50 条
  • [21] Approximation of the occupation measure of Levy processes
    Mordecki, E
    Wschebor, M
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (08) : 605 - 610
  • [22] Levy-Khintchine Representations of the Weighted Geometric Mean and the Logarithmic Mean
    Qi, Feng
    Zhang, Xiao-Jing
    Li, Wen-Hui
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) : 315 - 327
  • [23] A martingale review of some fluctuation theory for spectrally negative Levy processes
    Kyprianou, AE
    Palmowski, Z
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 16 - 29
  • [24] VARIANCE OPTIMAL STOPPING FOR GEOMETRIC LEVY PROCESSES
    Gad, Kamille Sore Tagholt
    Pedersen, Jesper Lund
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (01) : 128 - 145
  • [25] Shot-noise processes and the minimal martingale measure
    Schmidt, Thorsten
    Stute, Winfried
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (12) : 1332 - 1338
  • [26] GEOMETRIC MEAN AS A CONTINUOUS MEASURE OF ANDROGYNY
    BRYAN, L
    COLEMAN, M
    GANONG, L
    PSYCHOLOGICAL REPORTS, 1981, 48 (03) : 691 - 694
  • [27] A note on measure-geometric Laplacians
    Kesseboehmer, M.
    Samuel, T.
    Weyer, H.
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (03): : 643 - 655
  • [28] A note on measure-geometric Laplacians
    M. Kesseböhmer
    T. Samuel
    H. Weyer
    Monatshefte für Mathematik, 2016, 181 : 643 - 655
  • [29] Subordinating Levy processes and the measure of market activity
    Tichy, Tomas
    MATHEMATICAL METHODS IN ECONOMICS (MME 2017), 2017, : 795 - 800
  • [30] The minimal entropy martingale measures for geometric Lévy processes
    Tsukasa Fujiwara
    Yoshio Miyahara
    Finance and Stochastics, 2003, 7 : 509 - 531