A note on the mean correcting martingale measure for geometric Levy processes

被引:7
|
作者
Yao, Luogen [1 ,2 ]
Yang, Gang [1 ]
Yang, Xiangqun [2 ]
机构
[1] Hunan Business Coll, Dept Informat, Changsha 410205, Hunan, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
关键词
European call option; Equivalent martingale measure; Levy process; Mean correcting martingale measure;
D O I
10.1016/j.aml.2010.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A martingale measure is constructed by using a mean correcting transform for the geometric Levy processes model. It is shown that this measure is the mean correcting martingale measure if and only if, in the Levy process, there exists a continuous Gaussian part. Although this measure cannot be equivalent to a physical probability for a pure jump Levy process, we show that a European call option price under this measure is still arbitrage free. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:593 / 597
页数:5
相关论文
共 50 条
  • [1] On the minimal entropy martingale measure for Levy processes
    Andrusiv, Andrii
    Engelbert, Hans-Juergen
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (08) : 1223 - 1243
  • [2] The minimal entropy martingale measures for geometric Levy processes
    Fujiwara, T
    Miyahara, Y
    FINANCE AND STOCHASTICS, 2003, 7 (04) : 509 - 531
  • [3] The mean correcting martingale measures for exponential additive processes
    Luo-gen Yao
    Gang Yang
    Xiang-qun Yang
    Applied Mathematics-A Journal of Chinese Universities, 2016, 31 : 81 - 88
  • [4] The mean correcting martingale measures for exponential additive processes
    Yao Luo-gen
    Yang Gang
    Yang Xiang-qun
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2016, 31 (01) : 81 - 88
  • [5] The mean correcting martingale measures for exponential additive processes
    YAO Luo-gen
    YANG Gang
    YANG Xiang-qun
    AppliedMathematics:AJournalofChineseUniversities, 2016, 31 (01) : 81 - 88
  • [6] Martingale Representations for Functionals of Levy Processes
    Rajeev, B.
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2015, 77 (02): : 277 - 299
  • [7] Martingale representation of functionals of Levy processes
    Lokka, A
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, 22 (04) : 867 - 892
  • [8] Option pricing by mean correcting method for non-Gaussian Levy processes
    Yao, Luo Gen
    Yang, Gang
    Yang, Xiang Qun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (10) : 1927 - 1938
  • [9] Biggins' martingale convergence for branching Levy processes
    Bertoin, Jean
    Mallein, Bastien
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [10] A CONSTRUCTION OF LEVY PROCESSES BASED ON AZEMA MARTINGALE
    BERTOIN, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (19): : 987 - 990