DeepBL: a deep learning-based approach for in silico discovery of beta-lactamases

被引:14
|
作者
Wang, Yanan [1 ,2 ]
Li, Fuyi [3 ]
Bharathwaj, Manasa [4 ]
Rosas, Natalia C. [4 ]
Leier, Andre [5 ,6 ]
Akutsu, Tatsuya [7 ]
Webb, Geoffrey, I [8 ,9 ]
Marquez-Lago, Tatiana T. [10 ,11 ]
Li, Jian [12 ,13 ]
Lithgow, Trevor [13 ]
Song, Jiangning [2 ,12 ,14 ,15 ]
机构
[1] Monash Univ, Biomed Discovery Inst, Melbourne, Vic, Australia
[2] Monash Univ, Dept Biochem & Mol Biol, Melbourne, Vic, Australia
[3] Univ Melbourne, Dept Microbiol & Immunol, Peter Doherty Inst Infect & Immun, Melbourne, Vic, Australia
[4] Monash Univ, Dept Microbiol, Biomed Discovery Inst, Melbourne, Vic, Australia
[5] Univ Alabama Birmingham UAB, Dept Genet, Sch Med, Birmingham, AL USA
[6] Univ Alabama Birmingham UAB, Dept Cell Dev & Integrat Biol, Sch Med, Birmingham, AL USA
[7] Kyoto Univ, Bioinformat Ctr, Inst Chem Res, Kyoto, Japan
[8] Monash Univ, Fac Informat Technol, Melbourne, Vic, Australia
[9] Monash Univ, Monash Ctr Data Sci, Melbourne, Vic, Australia
[10] UAB Sch Med, Dept Genet, Birmingham, AL USA
[11] UAB Sch Med, Dept Cell Dev & Integrat Biol, Birmingham, AL USA
[12] Monash Univ, Monash Biomed Discovery Inst, Melbourne, Vic, Australia
[13] Monash Univ, Dept Microbiol, Melbourne, Vic, Australia
[14] Monash Univ, Monash Ctr Data Sci, Fac Informat Technol, Melbourne, Vic, Australia
[15] Monash Univ, ARC Ctr Excellence Adv Mol Imaging, Melbourne, Vic, Australia
基金
英国医学研究理事会; 澳大利亚研究理事会; 美国国家卫生研究院;
关键词
beta-lactamase; antimicrobial resistance; bioinformatics; deep learning; sequence homology; UBIQUITINATION SITES; RESISTANCE; PREDICTION; DATABASE; ANTIBIOTICS; MECHANISMS; EXPANSION; SEQUENCE;
D O I
10.1093/bib/bbaa301
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Beta-lactamases (BLs) are enzymes localized in the periplasmic space of bacterial pathogens, where they confer resistance to beta-lactam antibiotics. Experimental identification of BLs is costly yet crucial to understand beta-lactam resistance mechanisms. To address this issue, we present DeepBL, a deep learning-based approach by incorporating sequence-derived features to enable high-throughput prediction of BLs. Specifically, DeepBL is implemented based on the Small VGGNet architecture and the TensorFlow deep learning library. Furthermore, the performance of DeepBL models is investigated in relation to the sequence redundancy level and negative sample selection in the benchmark dataset. The models are trained on datasets of varying sequence redundancy thresholds, and the model performance is evaluated by extensive benchmarking tests. Using the optimized DeepBL model, we perform proteome-wide screening for all reviewed bacterium protein sequences available from the UniProt database.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A Deep Learning-Based Approach for Road Surface Damage Detection
    Kulambayev, Bakhytzhan
    Beissenova, Gulbakhram
    Katayev, Nazbek
    Abduraimova, Bayan
    Zhaidakbayeva, Lyazzat
    Sarbassova, Alua
    Akhmetova, Oxana
    Issayev, Sapar
    Suleimenova, Laura
    Kasenov, Syrym
    Shadinova, Kunsulu
    Shyrakbayev, Abay
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3403 - 3418
  • [42] A Deep Learning-Based Approach for the Diagnosis of Acute Lymphoblastic Leukemia
    Saeed, Adnan
    Shoukat, Shifa
    Shehzad, Khurram
    Ahmad, Ijaz
    Eshmawi, Ala' Abdulmajid
    Amin, Ali H.
    Tag-Eldin, Elsayed
    ELECTRONICS, 2022, 11 (19)
  • [43] A deep learning-based approach for machining process route generation
    Yajun Zhang
    Shusheng Zhang
    Rui Huang
    Bo Huang
    Lei Yang
    Jiachen Liang
    The International Journal of Advanced Manufacturing Technology, 2021, 115 : 3493 - 3511
  • [44] A Hybrid Deep Learning-Based Approach for Brain Tumor Classification
    Raza, Asaf
    Ayub, Huma
    Khan, Javed Ali
    Ahmad, Ijaz
    Salama, Ahmed S.
    Daradkeh, Yousef Ibrahim
    Javeed, Danish
    Rehman, Ateeq Ur
    Hamam, Habib
    ELECTRONICS, 2022, 11 (07)
  • [45] Towards Deep Learning-Based Approach for Detecting Android Malware
    Booz, Jarrett
    McGiff, Josh
    Hatcher, William
    Yu, Wei
    Nguyen, James
    Lu, Chao
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2019, 7 (04) : 1 - 24
  • [46] Explainable Deep Learning-Based Approach for Multilabel Classification of Electrocardiogram
    Ganeshkumar, M.
    Ravi, Vinayakumar
    Sowmya, V.
    Gopalakrishnan, E. A.
    Soman, K. P.
    IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2023, 70 (08) : 2787 - 2799
  • [47] A deep learning-based approach for the inverse design of the Helmholtz resonators
    Dogra, Sourabh
    Singh, Lokendra
    Nigam, Aditya
    Gupta, Arpan
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [48] A novel deep learning-based approach for video quality enhancement
    Moghaddam, Parham Zilouchian
    Modarressi, Mehdi
    Sadeghi, Mohammad Amin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 144
  • [49] Renyi entropy and deep learning-based approach for accent classification
    Badhe, Sanjay Srikrushna
    Shirbahadurkar, Suresh Damodar
    Gulhane, Sushen Rameshpant
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (01) : 1467 - 1499
  • [50] ATSS Deep Learning-Based Approach to Detect Apple Fruits
    Biffi, Leonardo Josoe
    Mitishita, Edson
    Liesenberg, Veraldo
    dos Santos, Anderson Aparecido
    Goncalves, Diogo Nunes
    Estrabis, Nayara Vasconcelos
    Silva, Jonathan de Andrade
    Osco, Lucas Prado
    Ramos, Ana Paula Marques
    Centeno, Jorge Antonio Silva
    Schimalski, Marcos Benedito
    Rufato, Leo
    Neto, Silvio Luis Rafaeli
    Marcato Junior, Jose
    Goncalves, Wesley Nunes
    REMOTE SENSING, 2021, 13 (01) : 1 - 23