Speech recognition through physical reservoir computing with neuromorphic nanowire networks

被引:5
|
作者
Milano, Gianluca [1 ]
Agliuzza, Matteo [2 ]
De Leo, Natascia [1 ]
Ricciardi, Carlo [2 ]
机构
[1] INRiM Ist Nazl Ric Metrol, Adv Mat Metrol & Life Sci Div, Str Cacce 91, I-10135 Turin, Italy
[2] Politecn Torino, Dept Appl Sci & Technol, Cso Duca Abruzzi 24, I-10129 Turin, Italy
基金
欧盟地平线“2020”;
关键词
physical reservoir; reservoir computing; speech recognition; memristive network; nanowire networks;
D O I
10.1109/IJCNN55064.2022.9892078
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The hardware implementation of the reservoir computing paradigm represents a key aspect for taking into advantage of neuromorphic data processing. In this context, self-organised nanonetworks represent a versatile and scalable computational substrate for multiple tasks by exploiting the emerging collective behaviour of the system arising from complexity. The emerging behaviour allows spatio-temporal processing of multiple input signals and relies on the nonlinear interaction in between a multitude of nanoscale memristive elements. By means of a physics-based grid-graph modeling, we report on the implementation of reservoir computing for a speech recognition task in a memristive nanonetwork based on nanowires (NWs) acting as a physical reservoir. Besides analysing the pre-processing step for the transduction of the audio samples in electrical stimuli to be applied to the physical reservoir, we analyse the effect of the network size and the adoption of virtual nodes on computing performances. Results show that memristive nanonetworks allow in materia implementation of reservoir computing for the realisation of brain-inspired neuromorphic systems with reduced training cost.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Exploring reservoir computing: Implementation via double stochastic nanowire networks
    Tang, Jian-Feng
    Xia, Lei
    Li, Guang-Li
    Fu, Jun
    Duan, Shukai
    Wang, Lidan
    CHINESE PHYSICS B, 2024, 33 (03)
  • [22] Exploring reservoir computing:Implementation via double stochastic nanowire networks
    唐健峰
    夏磊
    李广隶
    付军
    段书凯
    王丽丹
    ChinesePhysicsB, 2024, 33 (03) : 655 - 665
  • [23] Information dynamics in neuromorphic nanowire networks
    Ruomin Zhu
    Joel Hochstetter
    Alon Loeffler
    Adrian Diaz-Alvarez
    Tomonobu Nakayama
    Joseph T. Lizier
    Zdenka Kuncic
    Scientific Reports, 11
  • [24] Neuromorphic Information Processing with Nanowire Networks
    Kuncic, Zdenka
    Kavehei, Omid
    Zhu, Ruomin
    Loeffler, Alon
    Fu, Kaiwei
    Hochstetter, Joel
    Li, Mike
    Shine, James M.
    Diaz-Alvarez, Adrian
    Stieg, Adam
    Gimzewski, James
    Nakayama, Tomonobu
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [25] Emergent dynamics of neuromorphic nanowire networks
    Diaz-Alvarez, Adrian
    Higuchi, Rintaro
    Sanz-Leon, Paula
    Marcus, Ido
    Shingaya, Yoshitaka
    Stieg, Adam Z.
    Gimzewski, James K.
    Kuncic, Zdenka
    Nakayama, Tomonobu
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [26] Emergent dynamics of neuromorphic nanowire networks
    Adrian Diaz-Alvarez
    Rintaro Higuchi
    Paula Sanz-Leon
    Ido Marcus
    Yoshitaka Shingaya
    Adam Z. Stieg
    James K. Gimzewski
    Zdenka Kuncic
    Tomonobu Nakayama
    Scientific Reports, 9
  • [27] Keynote Speech: Information processing hardware, physical reservoir computing and complex-valued neural networks
    Hirose, Akira
    Nakane, Ryosho
    Tanaka, Gouhei
    2019 IEEE INTERNATIONAL MEETING FOR FUTURE OF ELECTRON DEVICES, KANSAI (IMFEDK2019), 2019, : 19 - 24
  • [28] One Step Backpropagation through time for learning input mapping in reservoir computing applied to speech recognition
    Hermans, Michiel
    Schrauwen, Benjamin
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 521 - 524
  • [29] Material Networks for Neuromorphic Computing
    Matsumoto, Takuya
    TWENTY-NINETH INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES: TFT TECHNOLOGIES AND FPD MATERIALS (AM-FPD 22), 2022, : 179 - 180
  • [30] Emerging dynamic memristors for neuromorphic reservoir computing
    Cao, Jie
    Zhang, Xumeng
    Cheng, Hongfei
    Qiu, Jie
    Liu, Xusheng
    Wang, Ming
    Liu, Qi
    NANOSCALE, 2022, 14 (02) : 289 - 298