On linear weingarten surfaces

被引:24
|
作者
Lopez, Rafael [1 ]
机构
[1] Univ Granada, Departmento Geometria & Topol, E-18071 Granada, Spain
关键词
Weingarten surface; cyclic surface; Riemann type;
D O I
10.1142/S0129167X08004728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study surfaces in Euclidean 3-space that satisfy a Weingarten condition of linear type as k(1) = mk(2) + n, where m and n are real numbers and k(1) and k(2) denote the principal curvatures at each point of the surface. We investigate the existence of such surfaces parametrized by a uniparametric family of circles. We prove that the only surfaces that exist are surfaces of revolution and the classical examples of minimal surfaces discovered by Riemann. The latter situation only occurs in the case ( m, n) = (-1, 0).
引用
收藏
页码:439 / 448
页数:10
相关论文
共 50 条
  • [31] DISCRETE FLAT SURFACES AND LINEAR WEINGARTEN SURFACES IN HYPERBOLIC 3-SPACE
    Hoffmann, T.
    Rossman, W.
    Sasaki, T.
    Yoshida, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (11) : 5605 - 5644
  • [32] Linear Weingarten centroaffine translation surfaces in R3
    Yang, Yun
    Yu, Yanhua
    Liu, Huili
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (02) : 458 - 466
  • [33] PLANAR P-ELASTICAE AND ROTATIONAL LINEAR WEINGARTEN SURFACES
    Pampano, Alvaro
    PROCEEDINGS OF THE TWENTIETH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2019, : 227 - 238
  • [34] Ribaucour transformations for constant mean curvature and linear Weingarten surfaces
    Corro, AV
    Ferreira, W
    Tenenblat, K
    PACIFIC JOURNAL OF MATHEMATICS, 2003, 212 (02) : 265 - 296
  • [35] Time–like Linear Weingarten Surfaces in Lorentzian Space Forms
    Da Feng Zuo
    Acta Mathematica Sinica, 2006, 22 : 1021 - 1026
  • [36] A conformal representation for linear Weingarten surfaces in the de Sitter space
    Aledo, Juan A.
    Espinar, Jose M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (08) : 1669 - 1677
  • [37] Discrete linear Weingarten surfaces with singularities in Riemannian and Lorentzian spaceforms
    Rossman, Wayne
    Yasumoto, Masashi
    SINGULARITIES IN GENERIC GEOMETRY, 2018, 78 : 383 - 410
  • [38] HCMU Surfaces and Weingarten Surfaces
    Zhiqiang Wei
    Yingyi Wu
    The Journal of Geometric Analysis, 2022, 32
  • [39] HCMU Surfaces and Weingarten Surfaces
    Wei, Zhiqiang
    Wu, Yingyi
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (07)
  • [40] ON EQUIAFFINE WEINGARTEN SURFACES
    SVEC, A
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1987, 37 (04) : 567 - 572