On linear weingarten surfaces

被引:24
|
作者
Lopez, Rafael [1 ]
机构
[1] Univ Granada, Departmento Geometria & Topol, E-18071 Granada, Spain
关键词
Weingarten surface; cyclic surface; Riemann type;
D O I
10.1142/S0129167X08004728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study surfaces in Euclidean 3-space that satisfy a Weingarten condition of linear type as k(1) = mk(2) + n, where m and n are real numbers and k(1) and k(2) denote the principal curvatures at each point of the surface. We investigate the existence of such surfaces parametrized by a uniparametric family of circles. We prove that the only surfaces that exist are surfaces of revolution and the classical examples of minimal surfaces discovered by Riemann. The latter situation only occurs in the case ( m, n) = (-1, 0).
引用
收藏
页码:439 / 448
页数:10
相关论文
共 50 条
  • [1] CHANNEL LINEAR WEINGARTEN SURFACES
    Hertrich-Jeromin, Udo
    Mundilova, Klara
    Tjaden, Ekkehard-Heinrich
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2015, 40 : 25 - 33
  • [2] DISCRETE LINEAR WEINGARTEN SURFACES
    Burstall, F.
    Hertrich-Jeromin, U.
    Rossman, W.
    NAGOYA MATHEMATICAL JOURNAL, 2018, 231 : 55 - 88
  • [3] Elliptic Linear Weingarten Surfaces
    Kim, Young Ho
    KYUNGPOOK MATHEMATICAL JOURNAL, 2018, 58 (03): : 547 - 557
  • [4] ON A CLASS OF LINEAR WEINGARTEN SURFACES
    Pulov, Vladimir I.
    Hadzhilazova, Mariana Ts.
    Mladenov, Ivailo M.
    PROCEEDINGS OF THE NINETEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2018, : 168 - 187
  • [5] Linear Weingarten Surfaces in ℝ3
    J. A. Gálvez
    A. Martínez
    F. Milán
    Monatshefte für Mathematik, 2003, 138 : 133 - 144
  • [6] Gap theorems for linear Weingarten surfaces
    De Lima H.F.
    Dos Santos F.R.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2020, 66 (1) : 89 - 98
  • [7] Hyperbolic linear Weingarten surfaces in ℝ3
    Aledo Sánchez J.A.
    Espinar J.M.
    Bulletin of the Brazilian Mathematical Society, New Series, 2007, 38 (2) : 291 - 300
  • [8] Lie geometry of linear Weingarten surfaces
    Burstall, Francis E.
    Hertrich-Jeromin, Udo
    Rossman, Wayne
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (7-8) : 413 - 416
  • [9] Weingarten and Linear Weingarten Type Tubular Surfaces in E3
    Tuncer, Yilmaz
    Yoon, Dae Won
    Karacan, Murat Kemal
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [10] Rotational linear Weingarten surfaces into the Euclidean sphere
    A. Barros
    J. Silva
    P. Sousa
    Israel Journal of Mathematics, 2012, 192 : 819 - 830