Numerical Investigation of the Time-Fractional Whitham-Broer-Kaup Equation Involving without Singular Kernel Operators

被引:35
|
作者
Nonlaopon, Kamsing [1 ]
Naeem, Muhammad [2 ]
Zidan, Ahmed M. [3 ,4 ]
Shah, Rasool [5 ]
Alsanad, Ahmed [6 ]
Gumaei, Abdu [6 ,7 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[2] Umm Al Qura Univ, Mecca, Saudi Arabia
[3] King Khalid Univ, Coll Sci, Dept Math, Abha 9004, Saudi Arabia
[4] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
[5] Abdul Wali Univ Mardan, Dept Math, Mardan, Pakistan
[6] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, STCs Artificial Intelligent Chair, Riyadh 11451, Saudi Arabia
[7] Taiz Univ, Fac Appl Sci, Comp Sci Dept, Taizi 6803, Yemen
关键词
TRAVELING-WAVE SOLUTIONS; SYMMETRY ANALYSIS; MODEL; FLUID; FLOW;
D O I
10.1155/2021/7979365
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to implement an analytical method, known as the Laplace homotopy perturbation transform technique, for the result of fractional-order Whitham-Broer-Kaup equations. The technique is a mixture of the Laplace transformation and homotopy perturbation technique. Fractional derivatives with Mittag-Leffler and exponential laws in sense of Caputo are considered. Moreover, this paper aims to show the Whitham-Broer-Kaup equations with both derivatives to see their difference in a real-world problem. The efficiency of both operators is confirmed by the outcome of the actual results of the Whitham-Broer-Kaup equations. Some problems have been presented to compare the solutions achieved with both fractional-order derivatives.
引用
收藏
页数:21
相关论文
共 50 条
  • [42] Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel
    V. F. Morales-Delgado
    J. F. Gómez-Aguilar
    Sunil Kumar
    M. A. Taneco-Hernández
    The European Physical Journal Plus, 133
  • [43] Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Kumar, Sunil
    Taneco-Hernandez, M. A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (05):
  • [44] A Comparative Study of Efficient Numerical Schemes for Time-Fractional Subdiffusion Equation Involving Singularity
    Ghosh, Bappa
    Mohapatra, Jugal
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2024,
  • [45] A Compact Difference Scheme for the Time-Fractional Partial Integro-Differential Equation with a Weakly Singular Kernel
    Guo, Jing
    Xu, Da
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (05) : 1261 - 1279
  • [46] Numerical solution of time-fractional Kawahara equation using reproducing kernel method with error estimate
    Onur Saldır
    Mehmet Giyas Sakar
    Fevzi Erdogan
    Computational and Applied Mathematics, 2019, 38
  • [47] Numerical solution of time-fractional Kawahara equation using reproducing kernel method with error estimate
    Saldir, Onur
    Sakar, Mehmet Giyas
    Erdogan, Fevzi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [48] Novel computations of the time-fractional chemical Schnakenberg mathematical model via non-singular kernel operators
    Ganie, Abdul Hamid
    Mofarreh, Fatemah
    Alharthi, N. S.
    Khan, Adnan
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [49] On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel
    Cuahutenango-Barro, B.
    Taneco-Hernandez, M. A.
    Gomez-Aguilar, J. F.
    CHAOS SOLITONS & FRACTALS, 2018, 115 : 283 - 299
  • [50] Numerical Investigation of Time-Fractional Phi-Four Equation via Novel Transform
    Mishra, Nidhish Kumar
    AlBaidani, Mashael M.
    Khan, Adnan
    Ganie, Abdul Hamid
    SYMMETRY-BASEL, 2023, 15 (03):