Computation on symmetry-invariant bases

被引:2
|
作者
Wu, J [1 ]
Klein, DJ [1 ]
Schmalz, TG [1 ]
机构
[1] Texas A&M Univ, Galveston, TX 77553 USA
关键词
symmetry invariance; symmetry adaptation; generator method; double cosets; sequence adaptation;
D O I
10.1002/qua.10578
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There is standard methodology available to facilitate electronic structure computations on a space that is invariant under a symmetry group. Here, we focus on additional consequences that arise if the basis itself is invariant under the symmetry group (i.e., in the case that application of symmetry operations to each basis vector yields, up to proportionality, a single basis vector). In illustration of the formal development, examples are considered where the symmetries are point-group symmetries and the basis vectors are Slater determinants over singly occupied atomic orbitals, as for an open-shell valence bond (VB) model. Several other types of examples are mentioned, e.g., a basis of chemically motivated resonance structures, as for a VB model, or an orbital basis of atomic orbitals for a one-electron Huckel-type model. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:7 / 22
页数:16
相关论文
共 50 条
  • [41] Invariant bases for free Lie rings
    Bryant, RM
    Kovács, LG
    Stöhr , R
    QUARTERLY JOURNAL OF MATHEMATICS, 2002, 53 : 1 - 17
  • [42] GROBNER BASES AND INVARIANT-THEORY
    STURMFELS, B
    WHITE, N
    ADVANCES IN MATHEMATICS, 1989, 76 (02) : 245 - 259
  • [43] INVARIANT-THEORY AND SUPERADIABATIC BASES
    GAO, XC
    XU, JB
    XU, DH
    EUROPHYSICS LETTERS, 1992, 19 (02): : 69 - 72
  • [44] Grobner Bases Computation and Macaulay Matrices
    Buchberger, Bruno
    2017 19TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2017), 2017, : 16 - 16
  • [45] Computation of janet bases for toric ideals
    Blinkov, Yu.A.
    Programmirovanie, 2002, 28 (05): : 65 - 69
  • [46] Computation of Janet bases for toric ideals
    Blinkov, YA
    PROGRAMMING AND COMPUTER SOFTWARE, 2002, 28 (05) : 290 - 292
  • [47] A Note on Dynamic Grobner Bases Computation
    Hashemi, Amir
    Talaashrafi, Delaram
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2016, 2016, 9890 : 276 - 288
  • [48] Computation of Pommaret Bases Using Syzygies
    Binaei, Bentolhoda
    Hashemi, Amir
    Seiler, Werner M.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2018, 2018, 11077 : 51 - 66
  • [49] Grobner bases and the computation of group cohomology
    Green, DJ
    GROBNER BASES AND THE COMPUTATION OF GROUP COHOMOLOGY, 2003, 1828 : 1 - +
  • [50] Distributed hybrid Grobner bases computation
    Kredel, Heinz
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT AND SOFTWARE INTENSIVE SYSTEMS (CISIS 2010), 2010, : 561 - 567