New results on permutation polynomials over finite fields

被引:7
|
作者
Qin, Xiaoer [1 ,2 ]
Qian, Guoyou [1 ]
Hong, Shaofang [1 ]
机构
[1] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[2] Yangtze Normal Univ, Coll Math & Comp Sci, Chongqing 408100, Peoples R China
基金
美国国家科学基金会;
关键词
Permutation polynomial; linearized polynomial; linear translator; matrix; BINOMIALS;
D O I
10.1142/S1793042115500220
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we get several new results on permutation polynomials over finite fields. First, by using the linear translator, we construct permutation polynomials of the forms L(x) + Sigma(k)(j)(= 1) gamma(j)h(j)(f(j) (x)) and x + Sigma(k)(j)(= 1) gamma(j)f(j) (x). These forms generalize the results obtained by Kyureghyan in 2011. Consequently, we characterize permutation polynomials of the form L(x) + Sigma(l)(i)(= 1) gamma iTrFqm/F-q (h(i)(x)), which extends a theorem of Charpin and Kyureghyan obtained in 2009.
引用
收藏
页码:437 / 449
页数:13
相关论文
共 50 条