Minimum weight feedback vertex sets in circle graphs

被引:8
|
作者
Gavril, Fanica [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
关键词
minimum feedback vertex set; maximum induced forest; circle graph; graph algorithms;
D O I
10.1016/j.ipl.2007.12.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We describe a polynomial time algorithm to find a minimum weight feedback vertex set, or equivalently, a maximum weight induced forest, in a circle graph. The circle graphs are the overlap graphs of intervals on a line. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] MINIMUM FEEDBACK ARC AND VERTEX SETS OF A DIRECTED GRAPH
    LEMPEL, A
    CEDERBAUM, I
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1966, CT13 (04): : 399 - +
  • [22] The minimum feedback vertex set for kronecker product of graphs
    Tigrine, Fouad
    Kheddouci, Hamamache
    UTILITAS MATHEMATICA, 2007, 74 : 207 - 237
  • [23] FEEDBACK VERTEX SETS AND CYCLICALLY REDUCIBLE GRAPHS.
    Wang, Ching-Chy
    Lloyd, Errol L.
    Soffa, Mary Lou
    Journal of the ACM, 1985, 32 (02): : 296 - 313
  • [24] Circular convex bipartite graphs: Feedback vertex sets
    Liu, Tian
    Lu, Min
    Lu, Zhao
    Xu, Ke
    THEORETICAL COMPUTER SCIENCE, 2014, 556 : 55 - 62
  • [25] Tractable Feedback Vertex Sets in Restricted Bipartite Graphs
    Jiang, Wei
    Liu, Tian
    Xu, Ke
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, 2011, 6831 : 424 - +
  • [26] A new bound on the feedback vertex sets in cubic graphs
    Liu, JP
    Zhao, C
    DISCRETE MATHEMATICS, 1996, 148 (1-3) : 119 - 131
  • [27] Independent feedback vertex sets for graphs of bounded diameter
    Bonamy, Marthe
    Dabrowski, Konrad K.
    Feghali, Carl
    Johnson, Matthew
    Paulusma, Daniel
    INFORMATION PROCESSING LETTERS, 2018, 131 : 26 - 32
  • [28] Graphs with unique minimum vertex-edge dominating sets
    Senthilkumar, B.
    Chellali, M.
    Naresh Kumar, H.
    Venkatakrishnan, Yanamandram B.
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (04) : 1785 - 1795
  • [29] Graphs with unique minimum edge-vertex dominating sets
    Senthilkumar, B.
    Chellali, M.
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) : 99 - 109
  • [30] Minimum weight resolving sets of grid graphs
    Andersen, Patrick
    Grigorious, Cyriac
    Miller, Mirka
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (03)