Band mixing in 29Si and 29P

被引:6
|
作者
Hossain, S [1 ]
Abdullah, MNA
Das, SK
Uddin, MA
Basak, AK
Gupta, HMS
Thompson, IJ
Malik, FB
机构
[1] Rajshahi Univ, Dept Phys, Rajshahi 6205, Bangladesh
[2] Shahjalal Univ Sci & Technol, Dept Phys, Sylhet, Bangladesh
[3] Univ Dhaka, Dept Phys, Dhaka 1000, Bangladesh
[4] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England
[5] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA
关键词
D O I
10.1088/0954-3899/31/5/003
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The experimental data of the Si-28(alpha, t)(29)p and Si-28(alpha,He-3)Si-29 reactions at 45 MeV have been analysed in terms of full finite-range coupled-channels calculations. In the calculations, the reaction paths, direct and two step via the inelastic states of the initial and final nuclei have been treated in terms of the finite-range transfer theory. The spectroscopic amplitudes connecting the deformed initial and final nuclei in both the reactions are obtained from Nilsson's model. The data of both the reactions, populating the 1/2(+), 3/2(+) and 5/2(+) states in the K-pi = 1/2(+) band and the 3/2(+) and 5/2(+) states in the K-pi = 3/2(+) band, are best described by about 20% mixing of between the two bands. The effects of normal Woods-Saxon (WS), squared WS and molecular type of alpha-nucleus potentials are also discussed.
引用
收藏
页码:309 / 319
页数:11
相关论文
共 50 条
  • [21] Spectroscopy of 30P and the abundance of 29Si in presolar grains
    Lotay, G.
    Doherty, D. T.
    Seweryniak, D.
    Carpenter, M. P.
    Janssens, R. V. F.
    Jose, J.
    Rogers, A. M.
    Woods, P. J.
    Zhu, S.
    PHYSICAL REVIEW C, 2020, 102 (03)
  • [22] Level structure of 30S and its importance in the 26Si(α, p)29P and 29P(p, γ)30S reaction rates (vol 86, 065805, 2012)
    Almaraz-Calderon, S.
    Tan, W. P.
    Aprahamian, A.
    Beard, M.
    Berg, G. P. A.
    Bucher, B.
    Couder, M.
    Goerres, J.
    O'Brien, S.
    Patel, D.
    Roberts, A.
    Sault, K.
    Wiescher, M.
    Brune, C. R.
    Massey, T. N.
    Fujita, K.
    Hatanaka, K.
    Ishiwaka, D.
    Matsubara, H.
    Okamura, H.
    Ong, H. J.
    Sakemi, Y.
    Shimizu, Y.
    Suzuki, T.
    Tameshige, Y.
    Tamii, A.
    Zenihiro, J.
    Kubo, T.
    Namiki, Y.
    Ohkuma, Y.
    Shimbara, Y.
    Suzuki, S.
    Watanabe, R.
    Yamada, R.
    Adachi, T.
    Fujita, Y.
    Fujita, H.
    Dozono, M.
    Wakasa, T.
    PHYSICAL REVIEW C, 2013, 88 (05):
  • [23] 29Si and 19F MAS NMR spectra of isolated 29Si(19F)2 and 29Si(19F)3 spin systems:: experiments and simulations
    Helluy, X
    Pietschnig, R
    Sebald, A
    SOLID STATE NUCLEAR MAGNETIC RESONANCE, 2003, 24 (04) : 286 - 300
  • [24] Preparation of single-crystal 29Si
    A. V. Gusev
    V. A. Gavva
    E. A. Kozyrev
    A. M. Potapov
    V. G. Plotnichenko
    Inorganic Materials, 2011, 47
  • [25] Interstitial H2 in 29Si
    Lavrov, E., V
    Melnikov, V. V.
    Abrosimov, N., V
    PHYSICAL REVIEW B, 2021, 103 (20)
  • [26] Preparation of single-crystal 29Si
    Gusev, A. V.
    Gavva, V. A.
    Kozyrev, E. A.
    Potapov, A. M.
    Plotnichenko, V. G.
    INORGANIC MATERIALS, 2011, 47 (07) : 691 - 693
  • [27] 29Si NMR investigations on oligosilane dendrimers
    U. Herzog
    C. Notheis
    E. Brendler
    G. Roewer
    B. Thomas
    Fresenius' Journal of Analytical Chemistry, 1997, 357 : 503 - 504
  • [28] WIDTH OF 6.379 MEV STATE IN 29SI
    RETZSCHMIDT, TW
    SKORKA, SJ
    MORGENSTERN, J
    SCHMIDT, H
    PHYSICS LETTERS, 1965, 16 (03): : 280 - +
  • [29] Improved 29Si NMR detection of sterically protected fluorosilanes using the 29Si(19F)-INEPT technique
    Pietschnig, Rudolf
    JOURNAL OF FLUORINE CHEMISTRY, 2007, 128 (02) : 150 - 152
  • [30] 29Si chemical shift anisotropies in calcium silicates from high-field 29Si MAS NMR spectroscopy
    Hansen, MR
    Jakobsen, HJ
    Skibsted, J
    INORGANIC CHEMISTRY, 2003, 42 (07) : 2368 - 2377