Generalized isolation forest for anomaly detection

被引:71
|
作者
Lesouple, Julien [1 ]
Baudoin, Cedric [2 ]
Spigai, Marc [2 ]
Tourneret, Jean-Yves [1 ,3 ]
机构
[1] TeSA, 7 Blvd Gare, F-31000 Toulouse, France
[2] Thales Alenia Space, 26 Ave Jean Francois Champollion, F-31100 Toulouse, France
[3] Univ Toulouse, INP ENSEEIHT IRIT, 2 Rue Charles Camichel, F-31071 Toulouse, France
关键词
Anomaly detection; Isolation forest; DENSITY; SUPPORT;
D O I
10.1016/j.patrec.2021.05.022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This letter introduces a generalization of Isolation Forest (IF) based on the existing Extended IF (EIF). EIF has shown some interest compared to IF being for instance more robust to some artefacts. However, some information can be lost when computing the EIF trees since the sampled threshold might lead to empty branches. This letter introduces a generalized isolation forest algorithm called Generalized IF (GIF) to overcome these issues. GIF is faster than EIF with a similar performance, as shown in several simulation results associated with reference databases used for anomaly detection. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 50 条
  • [31] Anomaly Detection in Spacecraft Telemetry using Similarity Metrics and Isolation Forest
    Bollam, Mahesh
    Roy, Praful H.
    Jagtap, Anuj
    Mullapudi, Balaram
    Verma, Anjali
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 911 - 915
  • [32] Anomaly Detection Forest
    Sternby, Jakob
    Thormarker, Erik
    Liljenstam, Michael
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1507 - 1514
  • [33] Fuzzy anomaly scores for Isolation Forest
    Kim, Kyoungok
    APPLIED SOFT COMPUTING, 2024, 166
  • [34] An Anomaly Detection Method for Wireless Sensor Networks Based on the Improved Isolation Forest
    Chen, Junxiang
    Zhang, Jilin
    Qian, Ruixiang
    Yuan, Junfeng
    Ren, Yongjian
    APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [35] Magnetic Anomaly Detection Method Based on Feature Fusion and Isolation Forest Algorithm
    Zhang, Ning
    Liu, Yifei
    Xu, Lei
    Lin, Pengfei
    Zhao, Heda
    Chang, Ming
    IEEE ACCESS, 2022, 10 : 84444 - 84457
  • [36] Isolation Forest Based Anomaly Detection Framework on Non-IID Data
    Xiang, Haolong
    Wang, Jiayu
    Ramamohanarao, Kotagiri
    Salcic, Zoran
    Dou, Wanchun
    Zhang, Xuyun
    IEEE INTELLIGENT SYSTEMS, 2021, 36 (03) : 31 - 40
  • [37] A mathematical assessment of the isolation random forest method for anomaly detection in big data
    Morales, Fernando A.
    Ramirez, Jorge M.
    Ramos, Edgar A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 1156 - 1177
  • [38] A Revised Isolation Forest procedure for Anomaly Detection with High Number of Data Points
    Marcelli, Elisa
    Barbariol, Tommaso
    Savarino, Vincenzo
    Beghi, Alessandro
    Susto, Gian Antonio
    2022 23RD IEEE LATIN-AMERICAN TEST SYMPOSIUM (LATS 2022), 2022,
  • [39] `An enhanced variable selection and Isolation Forest based methodology for anomaly detection with OES data
    Puggini, Luca
    McLoone, Sean
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 67 : 126 - 135
  • [40] Spectral-Spatial Anomaly Detection of Hyperspectral Data Based on Improved Isolation Forest
    Song, Xiangyu
    Aryal, Sunil
    Ting, Kai Ming
    Liu, Zhen
    He, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60