Spanning Trees with Disjoint Dominating and 2-Dominating Sets

被引:1
|
作者
Miotk, Mateusz [1 ]
Zylinski, Pawel [1 ]
机构
[1] Univ Gdansk, PL-80308 Gdansk, Poland
关键词
domination; 2-domination; spanning tree; VERTICES; GRAPHS;
D O I
10.7151/dmgt.2258
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide a structural characterization of graphs having a spanning tree with disjoint dominating and 2-dominating sets.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 50 条
  • [31] Minimal Double Dominating Sets in Trees
    Krzywkowski, Marcin
    FRONTIERS IN ALGORITHMICS, FAW 2014, 2014, 8497 : 151 - 157
  • [32] Reconfiguring minimum dominating sets in trees
    Lemańska M.
    Żyliński P.
    Journal of Graph Algorithms and Applications, 2020, 24 (01) : 47 - 61
  • [33] On the Number of Minimum Dominating Sets in Trees
    D. S. Taletskii
    Mathematical Notes, 2023, 113 : 552 - 566
  • [34] Locating and total dominating sets in trees
    Haynes, TW
    Henning, MA
    Howard, J
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (08) : 1293 - 1300
  • [35] Pairs of Disjoint Dominating Sets in Connected Cubic Graphs
    Loewenstein, Christian
    Rautenbach, Dieter
    GRAPHS AND COMBINATORICS, 2012, 28 (03) : 407 - 421
  • [36] Pairs of Disjoint Dominating Sets in Connected Cubic Graphs
    Christian Löwenstein
    Dieter Rautenbach
    Graphs and Combinatorics, 2012, 28 : 407 - 421
  • [37] Disjoint Paired-Dominating sets in Cubic Graphs
    Bacso, Gabor
    Bujtas, Csilla
    Tompkins, Casey
    Tuza, Zsolt
    GRAPHS AND COMBINATORICS, 2019, 35 (05) : 1129 - 1138
  • [38] Pairs of Disjoint Dominating Sets and the Minimum Degree of Graphs
    Loewenstein, Christian
    Rautenbach, Dieter
    GRAPHS AND COMBINATORICS, 2010, 26 (03) : 407 - 424
  • [39] Disjoint total dominating sets in near-triangulations
    Francis, P.
    Illickan, Abraham M.
    Jose, Lijo M.
    Rajendraprasad, Deepak
    JOURNAL OF GRAPH THEORY, 2024, 105 (01) : 68 - 77
  • [40] Disjoint Paired-Dominating sets in Cubic Graphs
    Gábor Bacsó
    Csilla Bujtás
    Casey Tompkins
    Zsolt Tuza
    Graphs and Combinatorics, 2019, 35 : 1129 - 1138