An inexact two-stage water management model for planning agricultural irrigation under uncertainty

被引:99
|
作者
Li, W. [1 ]
Li, Y. P. [1 ]
Li, C. H. [2 ]
Huang, G. H. [1 ]
机构
[1] N China Elect Power Univ, Res Acad Energy & Environm Studies, Beijing 102206, Peoples R China
[2] Beijing Normal Univ, Sch Environm, Beijing 100875, Peoples R China
关键词
Agricultural water; Inexact; Management; Policy analysis; Stochastic programming; Uncertainty; STOCHASTIC-PROGRAMMING MODEL; RESOURCES MANAGEMENT; OPTIMIZATION MODEL; DESIGN; ALLOCATION; ALGORITHM;
D O I
10.1016/j.agwat.2010.07.005
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
In this study, an inexact two-stage water management (ITWM) model is developed for planning agricultural irrigation in the Zhangweinan River Basin, China. The ITWM model is derived from the incorporation of interval-parameter programming (IPP) within a two-stage stochastic programming (TSP) framework. It can reflect not only uncertainties expressed as probability distributions but also interval numbers. Moreover, it can provide an effective linkage between conflicting economic benefits and the associated penalties attributed to the violation of the predefined policies. Four decision scenarios associated with different water-resources management policies are examined. Targeted incomes, recourse costs, and net system benefits under different scenarios are analyzed, which indicates that different policies for agricultural irrigation targets correspond to different water shortages and surplus, and thus lead to varied system benefit and system-failure risk. The results are valuable for supporting the adjustment Or justification of the existing irrigation patterns and identify a desired water-allocation plan for agricultural irrigation under uncertainty. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1905 / 1914
页数:10
相关论文
共 50 条
  • [21] Two-Stage Inexact-Probabilistic Programming Model for Water Quality Management
    Li, Yongping
    Li, Wei
    Huang, Guohe
    ENVIRONMENTAL ENGINEERING SCIENCE, 2012, 29 (07) : 713 - 725
  • [22] An inexact two-stage fractional energy systems planning model
    Song, Tangnyu
    Huang, Guohe
    Zhou, Xiong
    Wang, Xiuquan
    ENERGY, 2018, 160 : 275 - 289
  • [23] Planning an Agricultural Water Resources Management System: A Two-Stage Stochastic Fractional Programming Model
    Cui, Liang
    Li, Yongping
    Huang, Guohe
    SUSTAINABILITY, 2015, 7 (08) : 9846 - 9863
  • [24] A Novel Inexact Two-Stage Stochastic Robust-Compensation Model for Electric Supply Environmental Management Under Uncertainty
    Li, W.
    Liu, S. X.
    Fu, Z. H.
    Shi, H. D.
    Xie, Y. L.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2015, 137 (06):
  • [25] A Risk-Based Interval Two-Stage Programming Model for Agricultural System Management under Uncertainty
    Xu, Ye
    Huang, Guohe
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [26] An inexact two-stage fuzzy-stochastic programming model for water resources management
    Lu, H. W.
    Huang, G. H.
    Zeng, G. M.
    Maqsood, I.
    He, L.
    WATER RESOURCES MANAGEMENT, 2008, 22 (08) : 991 - 1016
  • [27] An Inexact Two-stage Fuzzy-stochastic Programming Model for Water Resources Management
    H. W. Lu
    G. H. Huang
    G. M. Zeng
    I. Maqsood
    L. He
    Water Resources Management, 2008, 22 : 991 - 1016
  • [28] A two-stage inexact joint-probabilistic programming method for air quality management under uncertainty
    Lv, Y.
    Huang, G. H.
    Li, Y. P.
    Yang, Z. F.
    Sun, W.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2011, 92 (03) : 813 - 826
  • [29] An inexact risk management model for agricultural land-use planning under water shortage
    Wei LI
    Changchun FENG
    Chao DAI
    Yongping LI
    Chunhui LI
    Ming LIU
    Frontiers of Earth Science, 2016, 10 (03) : 419 - 431
  • [30] An inexact risk management model for agricultural land-use planning under water shortage
    Wei Li
    Changchun Feng
    Chao Dai
    Yongping Li
    Chunhui Li
    Ming Liu
    Frontiers of Earth Science, 2016, 10 : 419 - 431