Binder-Free Electrodes and Their Application for Li-Ion Batteries

被引:81
|
作者
Kang, Yuqiong [1 ,2 ]
Deng, Changjian [3 ]
Chen, Yuqing [1 ,2 ]
Liu, Xinyi [4 ]
Liang, Zheng [5 ]
Li, Tao [4 ]
Hu, Quan [6 ]
Zhao, Yun [1 ,2 ,4 ]
机构
[1] Tsinghua Shenzhen Int Grad Sch, Shenzhen Key Lab Power Battery Safety Res, Shenzhen 518055, Peoples R China
[2] Tsinghua Shenzhen Int Grad Sch, Shenzhen Geim Graphene Ctr, Shenzhen 518055, Peoples R China
[3] Shenzhen Polytech, Hoffmann Inst Adv Mat, Shenzhen 518055, Peoples R China
[4] Northern Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA
[5] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[6] Changsha Nanoapparat Co Ltd, Changsha 410017, Peoples R China
来源
NANOSCALE RESEARCH LETTERS | 2020年 / 15卷 / 01期
关键词
Lithium ion batteries; Binder-free electrode; Fabrication method; Flexible; FREE ANODE MATERIALS; ATOMIC LAYER DEPOSITION; NITROGEN-DOPED CARBON; LITHIUM METAL ANODE; LONG-CYCLE LIFE; HIGH-CAPACITY; GRAPHENE OXIDE; FREESTANDING ANODE; CURRENT COLLECTOR; NICKEL FOAM;
D O I
10.1186/s11671-020-03325-w
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium-ion batteries (LIB) as energy supply and storage systems have been widely used in electronics, electric vehicles, and utility grids. However, there is an increasing demand to enhance the energy density of LIB. Therefore, the development of new electrode materials with high energy density becomes significant. Although many novel materials have been discovered, issues remain as (1) the weak interaction and interface problem between the binder and the active material (metal oxide, Si, Li, S, etc.), (2) large volume change, (3) low ion/electron conductivity, and (4) self-aggregation of active materials during charge and discharge processes. Currently, the binder-free electrode serves as a promising candidate to address the issues above. Firstly, the interface problem of the binder and active materials can be solved by fixing the active material directly to the conductive substrate. Secondly, the large volume expansion of active materials can be accommodated by the porosity of the binder-free electrode. Thirdly, the ion and electron conductivity can be enhanced by the close contact between the conductive substrate and the active material. Therefore, the binder-free electrode generally exhibits excellent electrochemical performances. The traditional manufacture process contains electrochemically inactive binders and conductive materials, which reduces the specific capacity and energy density of the active materials. When the binder and the conductive material are eliminated, the energy density of the battery can be largely improved. This review presents the preparation, application, and outlook of binder-free electrodes. First, different conductive substrates are introduced, which serve as carriers for the active materials. It is followed by the binder-free electrode fabrication method from the perspectives of chemistry, physics, and electricity. Subsequently, the application of the binder-free electrode in the field of the flexible battery is presented. Finally, the outlook in terms of these processing methods and the applications are provided.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] 3D Interconnected MoO2 Nanocrystals on Nickel Foam as Binder-free Anode for Li-ion Batteries
    祁琰媛
    ZHOU Bo
    ZHENG Shenbo
    YANG Xue
    JIN Wei
    JournalofWuhanUniversityofTechnology(MaterialsScience), 2018, 33 (06) : 1315 - 1322
  • [42] 3D Interconnected MoO2 Nanocrystals on Nickel Foam as Binder-free Anode for Li-ion Batteries
    Qi Yanyuan
    Zhou Bo
    Zheng Shenbo
    Yang Xue
    Jin Wei
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2018, 33 (06): : 1315 - 1322
  • [43] High-performance nickel manganese ferrite/oxidized graphene composites as flexible and binder-free anodes for Li-ion batteries
    Zhang, Zailei
    Tan, Qiangqiang
    Zhong, Ziyi
    Su, Fabing
    RSC ADVANCES, 2015, 5 (50) : 40018 - 40025
  • [44] Corrosive fracture of electrodes in Li-ion batteries
    Xu, Rong
    Zhao, Kejie
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2018, 121 : 258 - 280
  • [45] Dichalcogenide nanotube electrodes for Li-ion batteries
    Dominko, R
    Arcon, D
    Mrzel, A
    Zorko, A
    Cevc, P
    Venturini, P
    Gaberscek, M
    Remskar, M
    Mihailovic, D
    ADVANCED MATERIALS, 2002, 14 (21) : 1531 - +
  • [46] Electrochemomechanics of Electrodes in Li-Ion Batteries: A Review
    Xu, Rong
    Zhao, Kejie
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2016, 13 (03)
  • [47] Alloy Negative Electrodes for Li-Ion Batteries
    Obrovac, M. N.
    Chevrier, V. L.
    CHEMICAL REVIEWS, 2014, 114 (23) : 11444 - 11502
  • [48] Modeling fractal electrodes for Li-ion batteries
    Teixidor, G. Turon
    Park, B. Y.
    Mukherjee, P. P.
    Kang, Q.
    Madou, M. J.
    ELECTROCHIMICA ACTA, 2009, 54 (24) : 5928 - 5936
  • [49] Influence of carbon black and binder on Li-ion batteries
    Fransson, L
    Eriksson, T
    Edström, K
    Gustafsson, T
    Thomas, JO
    JOURNAL OF POWER SOURCES, 2001, 101 (01) : 1 - 9
  • [50] Two-phase interface hydrothermal synthesis of binder-free SnS2/graphene flexible paper electrodes for high-performance Li-ion batteries
    Wen, Hao
    Kang, Wenbin
    Liu, Xingang
    Li, Wenjuan
    Zhang, Liping
    Zhang, Chuhong
    RSC ADVANCES, 2019, 9 (41) : 23607 - 23613