Machine-Learning Rationalization and Prediction of Solid-State Synthesis Conditions

被引:37
|
作者
Huo, Haoyan [1 ,2 ]
Bartel, Christopher J. [1 ,2 ]
He, Tanjin [1 ,2 ]
Trewartha, Amalie [2 ,3 ]
Dunn, Alexander [1 ,4 ]
Ouyang, Bin [1 ,2 ]
Jain, Anubhav [4 ]
Ceder, Gerbrand [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Toyota Res Inst, 4440 El Camino Real, Los Altos, CA 94022 USA
[4] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
IN-SITU; DATASET; BATIO3; GROWTH;
D O I
10.1021/acs.chemmater.2c01293
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There currently exist no quantitative methods to determine the appropriate conditions for solid-state synthesis. This not only hinders the experimental realization of novel materials but also complicates the interpretation and understanding of solid-state reaction mechanisms. Here, we demonstrate a machine-learning approach that predicts synthesis conditions using large solid-state synthesis data sets text-mined from scientific journal articles. Using feature importance ranking analysis, we discovered that optimal heating temperatures have strong correlations with the stability of precursor materials quantified using melting points and formation energies (& UDelta;Gf, & UDelta;Hf). In contrast, features derived from the thermodynamics of synthesis-related reactions did not directly correlate to the chosen heating temperatures. This correlation between optimal solid-state heating temperature and precursor stability extends Tamman's rule from intermetallics to oxide systems, suggesting the importance of reaction kinetics in determining synthesis conditions. Heating times are shown to be strongly correlated with the chosen experimental procedures and instrument setups, which may be indicative of human bias in the data set. Using these predictive features, we constructed machine-learning models with good performance and general applicability to predict the conditions required to synthesize diverse chemical systems.
引用
收藏
页码:7323 / 7336
页数:14
相关论文
共 50 条
  • [41] An investigation on machine-learning models for the prediction of cyanobacteria growth
    Giere, Johannes
    Riley, Derek
    Nowling, R. J.
    McComack, Joshua
    Sander, Hedda
    FUNDAMENTAL AND APPLIED LIMNOLOGY, 2020, 194 (02) : 85 - 94
  • [42] Machine-Learning Applications in Structural Response Prediction: A Review
    Afshar, Aref
    Nouri, Gholamreza
    Ghazvineh, Shahin
    Hosseini Lavassani, Seyed Hossein
    PRACTICE PERIODICAL ON STRUCTURAL DESIGN AND CONSTRUCTION, 2024, 29 (03)
  • [43] Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods
    Zheng, Suqing
    Wang, Yibing
    Liu, Hongmei
    Chang, Wenping
    Xu, Yong
    Lin, Fu
    CHEMICAL RESEARCH IN TOXICOLOGY, 2019, 32 (06) : 1014 - 1026
  • [44] Machine-learning techniques for the prediction of protein–protein interactions
    Debasree Sarkar
    Sudipto Saha
    Journal of Biosciences, 2019, 44
  • [45] Machine-learning models for prediction of sepsis patients mortality
    Bao, C.
    Deng, F.
    Zhao, S.
    MEDICINA INTENSIVA, 2023, 47 (06) : 315 - 325
  • [46] Energy landscapes for a machine-learning prediction of patient discharge
    Das, Ritankar
    Wales, David J.
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [47] Performance Prediction of NUMA Placement: a Machine-Learning Approach
    Arapidis, Fanourios
    Karakostas, Vasileios
    Papadopoulou, Nikela
    Nikas, Konstantinos
    Goumas, Georgios
    Koziris, Nectarios
    2018 16TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM 2018), 2018, : 296 - 301
  • [48] MLStar A System for Synthesis of Machine-Learning Programs
    Kopito, Gabriel
    Amblard, Julien
    Filman, Robert
    Rabern, Landon
    Schwartz, Jonathan
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 1721 - 1726
  • [49] Representation of compounds for machine-learning prediction of physical properties
    Seko, Atsuto
    Hayashi, Hiroyuki
    Nakayama, Keita
    Takahashi, Akira
    Tanaka, Isao
    PHYSICAL REVIEW B, 2017, 95 (14)
  • [50] Design of Machine-Learning Classifier for Stock Market Prediction
    Srivastava A.K.
    Srivastava A.
    Singh S.
    Sugandha S.
    Tripta
    Gupta S.
    SN Computer Science, 2022, 3 (1)