Examining the structure and bonding in complex oxides using aberration-corrected imaging and spectroscopy

被引:15
|
作者
Klie, R. F. [1 ]
Qiao, Q. [1 ]
Paulauskas, T. [1 ]
Ramasse, Q. [2 ]
Oxley, M. P. [3 ,4 ]
Idrobo, J. C. [3 ,4 ]
机构
[1] Univ Illinois, Chicago, IL 60607 USA
[2] SuperSTEM, Daresbury, England
[3] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[4] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
TRANSMISSION ELECTRON-MICROSCOPY; LARGE THERMOELECTRIC-POWER; ENERGY-LOSS SPECTROSCOPY; RESOLUTION; CRYSTALS; SCATTERING; CA3CO4O9;
D O I
10.1103/PhysRevB.85.054106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Our ability to directly characterize the atomic and electronic structures is crucial to developing a fundamental understanding of structure-property relationships in complex-oxide materials. Here, we examine one specific example, the misfit-layered thermoelectric material Ca3Co4O9, which exhibits a high Seebeck coefficient governed by spin-entropy transport as well as hopping-mediated electron transport. However, the role of oxygen and its bonding with cobalt in thermoelectric transport remains unclear. We use atomic-resolution annular bright-field imaging to directly image the oxygen sublattice and to combine our experimental data with multislice image calculations to find that the oxygen atoms in the CoO2 subsystem are highly ordered, while the oxygen-atomic columns are displaced in the Ca2CoO3 subsystem. Atomic-column-resolved electron energy-loss spectroscopy and spectrum image calculations are used to quantify the bonding in the different subsystems of incommensurate Ca3Co4O9. We find that the holes in the CoO2 subsystem are delocalized, which could be responsible for the p-type conductivity found in the CoO2 subsystem.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Dispersion-engineered metasurfaces for aberration-corrected spectroscopy
    Zhu, Alexander Y.
    Chen, Wei Ting
    Sisler, Jared
    Yousef, Kerolos M. A.
    Lee, Eric
    Huang, Yao-Wei
    Qiu, Cheng-Wei
    Capasso, Federico
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [12] Prospects of atomic resolution imaging with an aberration-corrected STEM
    HREM Research, 14-48 Matsukazedai, Saitama, Higashimatsuyama
    355-0055, Japan
    Microscopy, 2001, 50 (04): : 291 - 305
  • [13] Artifacts in aberration-corrected ADF-STEM imaging
    Yu, ZH
    Batson, PE
    Silcox, J
    ULTRAMICROSCOPY, 2003, 96 (3-4) : 275 - 284
  • [14] Spherical Aberration-Corrected Metalens for Polarization Multiplexed Imaging
    Zhou, Shaodong
    Xi, Kelei
    Zhuang, Songlin
    Cheng, Qingqing
    NANOMATERIALS, 2021, 11 (11)
  • [15] Aberration-Corrected TEM Imaging of Oxygen Occupancy in YSZ
    An, Jihwan
    Koh, Ai Leen
    Park, Joong Sun
    Sinclair, Robert
    Guer, Turgut M.
    Prinz, Fritz B.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (07): : 1156 - 1160
  • [16] Prospects of atomic resolution imaging with an aberration-corrected STEM
    Ishizuka, K
    JOURNAL OF ELECTRON MICROSCOPY, 2001, 50 (04): : 291 - 305
  • [17] Aberration-corrected STEM/TEM imaging at 15 kV
    Sasaki, Takeo
    Sawada, Hidetaka
    Hosokawa, Fumio
    Sato, Yuta
    Suenaga, Kazu
    ULTRAMICROSCOPY, 2014, 145 : 50 - 55
  • [18] Aberration-corrected Electron Microscopy Imaging for Nanoelectronics Applications
    Kisielowski, C.
    Specht, P.
    Alloyeau, D.
    Erni, R.
    Ramasse, Q.
    FRONTIERS OF CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2009, 2009, 1173 : 231 - +
  • [19] Imaging single atoms using secondary electrons with an aberration-corrected electron microscope
    Zhu, Y.
    Inada, H.
    Nakamura, K.
    Wall, J.
    NATURE MATERIALS, 2009, 8 (10) : 808 - 812
  • [20] Imaging single atoms using secondary electrons with an aberration-corrected electron microscope
    Y. Zhu
    H. Inada
    K. Nakamura
    J. Wall
    Nature Materials, 2009, 8 : 808 - 812