A black ring with a rotating 2-sphere

被引:0
|
作者
Figueras, P
机构
[1] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
[2] Univ Barcelona, CER Astrofis Fis Particules & Cosmol, E-08028 Barcelona, Spain
来源
关键词
black holes in string theory; black holes;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a solution of the vacuum Einstein's equations in five dimensions corresponding to a black ring with horizon topology S-1 x S-2 and rotation in the azimuthal direction of the S2. This solution has a regular horizon up to a conical singularity, which can be placed either inside the ring or at infinity. This singularity arises due to the fact that this black ring is not balanced. In the infinite radius limit we correctly reproduce the Kerr black string, and taking another limit we recover the Myers-Perry black hole with a single angular momentum.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Biharmonic maps from a 2-sphere
    Wang, Ze-Ping
    Ou, Ye-Lin
    Yang, Han-Chun
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 77 : 86 - 96
  • [32] LAPLACE OPERATOR WITH POTENTIAL ON THE 2-SPHERE
    WIDOM, H
    ADVANCES IN MATHEMATICS, 1979, 31 (01) : 63 - 66
  • [33] OPTICAL RESONANCES AND 2-SPHERE SYSTEMS
    FULLER, KA
    APPLIED OPTICS, 1991, 30 (33): : 4716 - 4731
  • [34] Extremal Cubics on the Circle and the 2-sphere
    Roland Hildebrand
    Anastasiia Ivanova
    Results in Mathematics, 2022, 77
  • [35] 2-SPHERE PROBLEM AND RADIUS OF MUON
    MITRA, AK
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1976, 31 (11): : 1425 - 1426
  • [36] THE SPACE OF SELF MAPS ON THE 2-SPHERE
    HANSEN, VL
    LECTURE NOTES IN MATHEMATICS, 1990, 1425 : 40 - 47
  • [37] Wavelets on the 2-sphere and related manifolds
    Antoine, JP
    Vandergheynst, P
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 43 (1-2) : 13 - 24
  • [38] Evolutes of fronts on Euclidean 2-sphere
    Yu, Haiou
    Pei, Donghe
    Cui, Xiupeng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 678 - 686
  • [39] A GENERIC PROPERTY FOR DIFFEOMORPHISMS OF THE 2-SPHERE
    ZHANG, ZS
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1983, 4 (01) : 105 - 108
  • [40] GENERALIZATION OF ISOPERIMETRIC INEQUALITY ON 2-SPHERE
    WEINER, JL
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (03) : 243 - 248