Multivariate and functional robust fusion methods for structured Big Data

被引:4
|
作者
Aaron, Catherine [1 ]
Cholaquidis, Alejandro [2 ,3 ]
Fraiman, Ricardo [2 ,3 ,4 ]
Ghattas, Badih [5 ]
机构
[1] Univ Clermont Auvergne, Campus Univ Cezeaux, Aubiere, France
[2] Univ Republica, CABIDA, Montevideo, Uruguay
[3] Univ Republica, Ctr Matemat, Montevideo, Uruguay
[4] Inst Pasteur Montevideo, Montevideo, Uruguay
[5] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, F-13453 Marseille, France
关键词
Big data; Clustering; Functional data; Robustness; QUANTILES;
D O I
10.1016/j.jmva.2018.06.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We address one of the important problems in Big Data, namely how to combine estimators from different subsamples by robust fusion procedures, when we are unable to deal with the whole sample. We propose a general framework based on the classic idea of 'divide and conquer'. In particular we address in some detail the case of a multivariate location and scatter matrix, the covariance operator for functional data, and clustering problems. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:149 / 161
页数:13
相关论文
共 50 条
  • [31] Diagnostic plots for robust multivariate methods
    Pison, G
    Van Aelst, S
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (02) : 310 - 329
  • [32] Multivariate Machine Learning Methods for Fusing Multimodal Functional Neuroimaging Data
    Daehne, Sven
    Biessmann, Felix
    Samek, Wojciech
    Haufe, Stefan
    Goltz, Dominique
    Gundlach, Christopher
    Villringer, Arno
    Fazli, Siamac
    Muller, Klaus-Robert
    PROCEEDINGS OF THE IEEE, 2015, 103 (09) : 1507 - 1530
  • [33] Structured and Unstructured Big Data Analytics
    Misluu, Suyash
    Misra, Anuranjan
    2017 INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN COMPUTER, ELECTRICAL, ELECTRONICS AND COMMUNICATION (CTCEEC), 2017, : 740 - 746
  • [34] Megastore: structured storage for Big Data
    Moscoso Zea, Oswaldo
    ENFOQUE UTE, 2012, 3 (02): : 1 - 12
  • [35] MULTIVARIATE METHODS FOR SURVEY EVALUATION: A CASE STUDY OF BIG DATA AND THE NEW DIGITAL DIVIDE
    Cibulkova, Jana
    Novak, Richard
    Sulc, Zdenek
    PROCEEDINGS OF THE 22ND INTERNATIONAL SCIENTIFIC CONFERENCE ON APPLICATIONS OF MATHEMATICS AND STATISTICS IN ECONOMICS (AMSE 2019), 2019, : 62 - 69
  • [36] Multivariate robust linear models for multivariate longitudinal data
    Lee, Keunbaik
    Choi, Jongwoo
    Jang, Eun Jin
    Dey, Dipak
    JOURNAL OF MULTIVARIATE ANALYSIS, 2025, 206
  • [37] Do not ignore structured data in big data analytics
    Molaro, Cristian
    IBM Data Management Magazine, 2013, (07):
  • [38] Some robust distances for multivariate data
    Kalina, Jan
    Pestova, Barbora
    34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, : 365 - 370
  • [39] Discrimination of haloarchaeal genera using Raman spectroscopy and robust methods for multivariate data analysis
    Dina, Nicoleta Elena
    Les, Anda
    Baricz, Andreea
    Szoke-Nagy, Tiberiu
    Leopold, Nicolae
    Sarbu, Costel
    Banciu, Horia Leonard
    JOURNAL OF RAMAN SPECTROSCOPY, 2017, 48 (08) : 1122 - 1126
  • [40] Data fusion in multivariate calibration transfer
    Ni, Wangdong
    Brown, Steven D.
    Man, Ruilin
    ANALYTICA CHIMICA ACTA, 2010, 661 (02) : 133 - 142