How much does multi-temporal Sentinel-2 data improve crop type classification?

被引:238
|
作者
Vuolo, Francesco [1 ]
Neuwirth, Martin [1 ]
Immitzer, Markus [1 ]
Atzberger, Clement [1 ]
Ng, Wai-Tim [1 ]
机构
[1] Univ Nat Resources & Life Sci Vienna BOKU, Inst Surveying Remote Sensing & Land Informat IVF, Peter Jordan Str 82, A-1190 Vienna, Austria
关键词
Sentinel-2; Crop type; Random forest; Multi-temporal classification; RANDOM FOREST; LAND-COVER; ACCURACY; IMAGES;
D O I
10.1016/j.jag.2018.06.007
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The Sentinel-2 mission of the ESA's Copernicus programme is generating unprecedented volumes of data at high spatial, spectral and temporal resolutions. The objective of this short communication is to assess the value of multi-temporal information for crop type classification using Sentinel-2 data. The analysis is carried out in an agricultural region in Austria and considers nine crop types during two years (2016 and 2017). To assess the impact of multi-temporal information, we applied a Random Forest (RF) classifier and analysed the results by using the RF out-of-bag error to calculate the overall accuracy (OA) and Fl score. The models were also validated using an independent reference dataset. Results show how the addition of multi-temporal information increases the crop type classification accuracy with similar trends for 2016 and 2017. At the very beginning of the crop growing season (March-April), the classification achieves relatively low accuracies (OA: similar to 0.50). Significant increases in OA can be obtained between May and June, until the OA reaches its highest value in July. The final RF model was able to predict with very high confidence nine crop types for both years (OA: 0.95-0.96 and Fl score: 0.83-1.00). The independent validation dataset with more than 5000 reference plots showed comparable results (OA: 91-95% and Fl score: 0.74-0.99). We conclude that the multi-temporal crop type classification efficiently mitigates negative effects observed when using single-date acquisition within sub-optimal temporal windows.
引用
收藏
页码:122 / 130
页数:9
相关论文
共 50 条
  • [21] Crop Mapping Using Random Forest and Particle Swarm Optimization based on Multi-Temporal Sentinel-2
    Akbari, Elahe
    Boloorani, Ali Darvishi
    Samany, Najmeh Neysani
    Hamzeh, Saeid
    Soufizadeh, Saeid
    Pignatti, Stefano
    REMOTE SENSING, 2020, 12 (09)
  • [22] Spatio-Temporal Classification Framework for Mapping Woody Vegetation from Multi-Temporal Sentinel-2 Imagery
    Kovacevic, Jovan
    Cvijetinovic, Zeljko
    Lakusic, Dmitar
    Kuzmanovic, Nevena
    Sinzar-Sekulic, Jasmina
    Mitrovic, Momir
    Stancic, Nikola
    Brodic, Nenad
    Mihajlovic, Dragan
    REMOTE SENSING, 2020, 12 (17) : 1 - 23
  • [23] Evaluating the potential of multi-temporal Sentinel-1 and Sentinel-2 data for regional mapping of olive trees
    Akcay, Haydar
    Aksoy, Samet
    Kaya, Sinasi
    Sertel, Elif
    Dash, Jadu
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (23) : 7338 - 7364
  • [24] Forest stand segmentation with multi-temporal Sentinel-2 imagery and superpixels
    Demirpolat, Caner
    Leloglu, Ugur Murat
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (01)
  • [25] Automating field boundary delineation with multi-temporal Sentinel-2 imagery
    Watkins, Barry
    Van Niekerk, Adriaan
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 167
  • [26] Quantifying understory vegetation density using multi-temporal Sentinel-2 and GEDI LiDAR data
    Xi, Yanbiao
    Tian, Qingjiu
    Zhang, Wenmin
    Zhang, Zhichao
    Tong, Xiaoye
    Brandt, Martin
    Fensholt, Rasmus
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 2068 - 2083
  • [27] Maize and sorghum field segregation using multi-temporal Sentinel-2 data in central Mexico
    Soler-Perez-Salazar, Maria J.
    Ortega-Garcia, Nicolas
    Vaca-Mier, Mabel
    Cram-Hyedric, Silke
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (02)
  • [28] Evaluating capabilities of machine learning algorithms for aquatic vegetation classification in temperate wetlands using multi-temporal Sentinel-2 data
    Piaser, Erika
    Villa, Paolo
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 117
  • [29] Classification of Nemoral Forests with Fusion of Multi-Temporal Sentinel-1 and 2 Data
    Bjerreskov, Kristian Skau
    Nord-Larsen, Thomas
    Fensholt, Rasmus
    REMOTE SENSING, 2021, 13 (05) : 1 - 19
  • [30] Exploring the Optimal Feature Combination of Tree Species Classification by Fusing Multi-Feature and Multi-Temporal Sentinel-2 Data in Changbai Mountain
    Wang, Mingchang
    Li, Mingjie
    Wang, Fengyan
    Ji, Xue
    FORESTS, 2022, 13 (07):