How much does multi-temporal Sentinel-2 data improve crop type classification?

被引:238
|
作者
Vuolo, Francesco [1 ]
Neuwirth, Martin [1 ]
Immitzer, Markus [1 ]
Atzberger, Clement [1 ]
Ng, Wai-Tim [1 ]
机构
[1] Univ Nat Resources & Life Sci Vienna BOKU, Inst Surveying Remote Sensing & Land Informat IVF, Peter Jordan Str 82, A-1190 Vienna, Austria
关键词
Sentinel-2; Crop type; Random forest; Multi-temporal classification; RANDOM FOREST; LAND-COVER; ACCURACY; IMAGES;
D O I
10.1016/j.jag.2018.06.007
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The Sentinel-2 mission of the ESA's Copernicus programme is generating unprecedented volumes of data at high spatial, spectral and temporal resolutions. The objective of this short communication is to assess the value of multi-temporal information for crop type classification using Sentinel-2 data. The analysis is carried out in an agricultural region in Austria and considers nine crop types during two years (2016 and 2017). To assess the impact of multi-temporal information, we applied a Random Forest (RF) classifier and analysed the results by using the RF out-of-bag error to calculate the overall accuracy (OA) and Fl score. The models were also validated using an independent reference dataset. Results show how the addition of multi-temporal information increases the crop type classification accuracy with similar trends for 2016 and 2017. At the very beginning of the crop growing season (March-April), the classification achieves relatively low accuracies (OA: similar to 0.50). Significant increases in OA can be obtained between May and June, until the OA reaches its highest value in July. The final RF model was able to predict with very high confidence nine crop types for both years (OA: 0.95-0.96 and Fl score: 0.83-1.00). The independent validation dataset with more than 5000 reference plots showed comparable results (OA: 91-95% and Fl score: 0.74-0.99). We conclude that the multi-temporal crop type classification efficiently mitigates negative effects observed when using single-date acquisition within sub-optimal temporal windows.
引用
收藏
页码:122 / 130
页数:9
相关论文
共 50 条
  • [1] SENTINEL-2 MULTI-TEMPORAL DATA FOR RICE CROP CLASSIFICATION IN NEPAL
    Baidar, Tina
    Fernandez-Beltran, Ruben
    Pla, Filiberto
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4259 - 4262
  • [2] Tree Species Classification with Multi-Temporal Sentinel-2 Data
    Persson, Magnus
    Lindberg, Eva
    Reese, Heather
    REMOTE SENSING, 2018, 10 (11)
  • [3] Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation
    Wakulinska, Martyna
    Marcinkowska-Ochtyra, Adriana
    REMOTE SENSING, 2020, 12 (17)
  • [4] Crop Classification Using Multi-Temporal Sentinel-2 Data in the Shiyang River Basin of China
    Yi, Zhiwei
    Jia, Li
    Chen, Qiting
    REMOTE SENSING, 2020, 12 (24) : 1 - 21
  • [5] Phenology-based winter wheat classification for crop growth monitoring using multi-temporal sentinel-2 satellite data
    Newete, Solomon W.
    Abutaleb, Khaled
    Chirima, George J.
    Dabrowska-Zielinska, Katarzyna
    Gurdak, Radoslaw
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2024, 27 (04): : 695 - 704
  • [6] Fully automatic multi-temporal land cover classification using Sentinel-2 image data
    Baamonde, Sergio
    Cabana, Martino
    Sillero, Neftali
    Penedo, Manuel G.
    Naveira, Horacio
    Novo, Jorge
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019), 2019, 159 : 650 - 657
  • [7] Deep Seasonal Network for Remote Sensing Imagery Classification of Multi-Temporal Sentinel-2 Data
    Cheng, Keli
    Scott, Grant J.
    REMOTE SENSING, 2023, 15 (19)
  • [8] Fusion of Multi-Temporal PAZ and Sentinel-1 Data for Crop Classification
    Busquier, Mario
    Valcarce-Dineiro, Ruben
    Lopez-Sanchez, Juan M.
    Plaza, Javier
    Sanchez, Nilda
    Arias-Perez, Benjamin
    REMOTE SENSING, 2021, 13 (19)
  • [9] WILDFIRE DAMAGE ASSESSMENT USING MULTI-TEMPORAL SENTINEL-2 DATA
    Chung, M.
    Jung, M.
    Kim, Y.
    ISPRS ICWG III/IVA GI4DM 2019 - GEOINFORMATION FOR DISASTER MANAGEMENT, 2019, 42-3 (W8): : 97 - 102
  • [10] Extraction of Crop Planting Structure in County Based on Multi-temporal Images of Sentinel-2
    Li, Zhengqian
    Xiong, Feng
    2020 ASIA CONFERENCE ON GEOLOGICAL RESEARCH AND ENVIRONMENTAL TECHNOLOGY, 2021, 632