Topological Mixing for Some Residual Sets of Interval Exchange Transformations

被引:2
|
作者
Chaika, Jon [1 ]
Fickenscher, Jon [2 ]
机构
[1] Univ Utah, Salt Lake City, UT 84115 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
关键词
SYSTEMS;
D O I
10.1007/s00220-014-2191-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that a residual set of non-degenerate IETs on more than 3 letters is topologically mixing. This shows that there exists a uniquely ergodic topologically mixing IET. This is then applied to show that some billiard flows in a fixed direction in an L-shaped polygon are topologically mixing.
引用
收藏
页码:483 / 503
页数:21
相关论文
共 50 条
  • [31] Positive topological entropy and Δ-weakly mixing sets
    Huang, Wen
    Li, Jian
    Ye, Xiangdong
    Zhou, Xiaoyao
    ADVANCES IN MATHEMATICS, 2017, 306 : 653 - 683
  • [32] SOME TOPOLOGICAL RESULTS ON LEVEL SETS AND MULTIFRACTAL SETS
    Liu, Chuntai
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (01)
  • [33] Some Implication Operators on Interval Sets and Rough Sets
    Wang, Yongquan
    Zhang, Xiaohong
    PROCEEDINGS OF THE 8TH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS, 2009, : 328 - +
  • [34] On the commutator group of the group of interval exchange transformations
    Yaroslav Vorobets
    Proceedings of the Steklov Institute of Mathematics, 2017, 297 : 285 - 296
  • [35] Languages of k-interval exchange transformations
    Ferenczi, Sebastien
    Zamboni, Luca Q.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 705 - 714
  • [36] Rigidity for a class of generalized interval exchange transformations
    Khanin, Konstantin
    Kocic, Sasa
    DYNAMICAL SYSTEMS, ERGODIC THEORY, AND PROBABILITY: IN MEMORY OF KOLYA CHERNOV, 2017, 698 : 161 - 167
  • [37] An entropy estimate for infinite interval exchange transformations
    Frank Blume
    Mathematische Zeitschrift, 2012, 272 : 17 - 29
  • [38] Cascades in the dynamics of affine interval exchange transformations
    Boulanger, Adrien
    Fougeron, Charles
    Ghazouani, Selim
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (08) : 2073 - 2097
  • [39] On the Commutator Group of the Group of Interval Exchange Transformations
    Vorobets, Yaroslav
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 297 (01) : 285 - 296
  • [40] Words with low complexity and interval exchange transformations
    Belov, A. Ya.
    Chernyat'ev, A. L.
    RUSSIAN MATHEMATICAL SURVEYS, 2008, 63 (01) : 158 - 160