Hardness of k-anonymous microaggregation

被引:1
|
作者
Thaeter, Florian [1 ]
Reischuk, Ruediger [1 ]
机构
[1] Univ Lubeck, Inst Theoret Informat, D-23562 Lubeck, Germany
关键词
Microaggregation; k-anonymity; Clustering;
D O I
10.1016/j.dam.2020.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
k-anonymous microaggregation of data in R-d with d >= 2 is shown to be NP-hard for all k >= 4, extending a previous result for the case k = 3 only. The proof uses similarities between microaggregation and the k-means problem. A reduction of Planar 3-SAT to the k-means clustering problem is adapted to 4-anonymous clustering. Then this construction is extended to arbitrary k >= 4. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 158
页数:10
相关论文
共 50 条
  • [21] K-anonymous path privacy on social graphs
    Wang, Shyue-Liang
    Tsai, Zheng-Ze
    Ting, I-Hsien
    Hong, Tzung-Pei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (03) : 1191 - 1199
  • [22] Secure distributed k-anonymous pattern mining
    Jiang, Wei
    Atzori, Maurizio
    ICDM 2006: SIXTH INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2006, : 319 - 329
  • [23] A modification of the Lloyd algorithm for k-anonymous quantization
    Rebollo-Monedero, David
    Forne, Jordi
    Pallares, Esteve
    Parra-Arnau, Javier
    INFORMATION SCIENCES, 2013, 222 : 185 - 202
  • [24] An improved k-anonymous message transmission protocol
    School of Computer Sci., Xidian Univ., Xi'an 710071, China
    不详
    Sichuan Daxue Xuebao (Gongcheng Kexue Ban), 2007, 2 (145-149):
  • [25] How anonymous is k-anonymous? Look at your quasi-ID
    Bettini, Claudio
    Wang, X. Sean
    Jajodia, Sushil
    SECURE DATA MANAGEMENT, PROCEEDINGS, 2008, 5159 : 1 - +
  • [26] A k-anonymous approach to privacy preserving collaborative filtering
    Casino, Fran
    Domingo-Ferrer, Josep
    Patsakis, Constantinos
    Puig, Domenec
    Solanas, Agusti
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2015, 81 (06) : 1000 - 1011
  • [27] K-anonymous multi-party secret handshakes
    Xu, Shouhuai
    Yung, Moti
    FINANCIAL CRYPTOGRAPHY AND DATA SECURITY, 2007, 4886 : 72 - +
  • [28] Local Differential Privacy with K-anonymous for Frequency Estimation
    Zhao, Dan
    Chen, Hong
    Zhao, Suyun
    Li, Cuiping
    Zhang, Xiaoying
    Liu, Ruixuan
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 5819 - 5828
  • [29] A New Method of Privacy Protection: Random k-Anonymous
    Song, Fagen
    Ma, Tinghuai
    Tian, Yuan
    Al-Rodhaan, Mznah
    IEEE ACCESS, 2019, 7 : 75434 - 75445
  • [30] A k-anonymous rule clustering approach for data publishing
    Ohki M.
    Inuiguchi M.
    1600, Fuji Technology Press (21): : 980 - 988