Hardness of k-anonymous microaggregation

被引:1
|
作者
Thaeter, Florian [1 ]
Reischuk, Ruediger [1 ]
机构
[1] Univ Lubeck, Inst Theoret Informat, D-23562 Lubeck, Germany
关键词
Microaggregation; k-anonymity; Clustering;
D O I
10.1016/j.dam.2020.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
k-anonymous microaggregation of data in R-d with d >= 2 is shown to be NP-hard for all k >= 4, extending a previous result for the case k = 3 only. The proof uses similarities between microaggregation and the k-means problem. A reduction of Planar 3-SAT to the k-means clustering problem is adapted to 4-anonymous clustering. Then this construction is extended to arbitrary k >= 4. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 158
页数:10
相关论文
共 50 条
  • [1] k-Anonymous microaggregation with preservation of statistical dependence
    Rebollo-Monedero, David
    Forne, Jordi
    Soriano, Miguel
    Puiggali Allepuz, Jordi
    INFORMATION SCIENCES, 2016, 342 : 1 - 23
  • [2] Utility Evaluation of K-anonymous Data by Microaggregation
    Wang Lixia
    Han Jianmin
    2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL IV, 2009, : 381 - +
  • [3] Computational improvements in parallelized k-anonymous microaggregation of large databases
    Mohamad Mezher, Ahmad
    Garcia Alvarez, Alejandro
    Rebollo-Monedero, David
    Forne, Jordi
    2017 IEEE 37TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS (ICDCSW), 2017, : 258 - 264
  • [4] Does k-Anonymous Microaggregation Affect Machine-Learned Macrotrends?
    Rodriguez-Hoyos, Ana
    Estrada-Jimenez, Jose
    Rebollo-Monedero, David
    Parra-Arnau, Javier
    Forne, Jordi
    IEEE ACCESS, 2018, 6 : 28258 - 28277
  • [5] p-Probabilistic k-anonymous microaggregation for the anonymization of surveys with uncertain participation
    Rebollo-Monedero, David
    Forne, Jordi
    Soriano, Miguel
    Puiggali Allepuz, Jordi
    INFORMATION SCIENCES, 2017, 382 : 388 - 414
  • [6] Scalable k-anonymous Microaggregation: Exploiting the Tradeoff between Computational Complexity and Information Loss
    Thaeter, Florian
    Reischuk, Ruediger
    SECRYPT 2021: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, 2021, : 87 - 98
  • [7] An algorithm for k-anonymous microaggregation and clustering inspired by the design of distortion-optimized quantizers
    Rebollo-Monedero, David
    Forne, Jordi
    Soriano, Miguel
    DATA & KNOWLEDGE ENGINEERING, 2011, 70 (10) : 892 - 921
  • [8] Efficient k-anonymous microaggregation of multivariate numerical data via principal component analysis
    Rebollo Monedero, David
    Mohamad Mezher, Ahmad
    Casanova Colome, Xavier
    Forne, Jordi
    Soriano, Miguel
    INFORMATION SCIENCES, 2019, 503 : 417 - 443
  • [9] Incremental k-Anonymous Microaggregation in Large-Scale Electronic Surveys with Optimized Scheduling
    Rebollo-Monedero, David
    Hernandez-Baigorri, Cesar
    Forne, Jordi
    Soriano, Miguel
    IEEE ACCESS, 2018, 6 : 60016 - 60044
  • [10] K-Anonymous patterns
    Atzori, M
    Bonchi, F
    Giannotti, F
    Pedreschi, D
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2005, 2005, 3721 : 10 - 21