Tensor Network Approach to Phase Transitions of a Non-Abelian Topological Phase

被引:15
|
作者
Xu, Wen-Tao [1 ,2 ]
Zhang, Qi [1 ,2 ]
Zhang, Guang-Ming [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
关键词
ANTIFERROMAGNETIC TRANSITION; ANYONS; ORDER; MODEL;
D O I
10.1103/PhysRevLett.124.130603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The non-Abelian topological phase with Fibonacci anyons minimally supports universal quantum computation. In order to investigate the possible phase transitions out of the Fibonacci topological phase, we propose a generic quantum-net wave function with two tuning parameters dual with each other, and the norm of the wave function can be exactly mapped into a partition function of the two-coupled phi(2)-state Potts models, where phi = (root 5 + 1)/2 is the golden ratio. By developing the tensor network representation of this wave function on a square lattice, we can accurately calculate the full phase diagram with the numerical methods of tensor networks. More importantly, it is found that the non-Abelian Fibonacci topological phase is enclosed by three distinct nontopological phases and their dual phases of a single phi(2)-state Potts model: the gapped dilute net phase, critical dense net phase, and spontaneous translation symmetry breaking gapped phase. We also determine the critical properties of the phase transitions among the Fibonacci topological phase and those nontopological phases.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Topological Fracton Quantum Phase Transitions by Tuning Exact Tensor Network States
    Zhu, Guo-Yi
    Chen, Ji-Yao
    Ye, Peng
    Trebst, Simon
    PHYSICAL REVIEW LETTERS, 2023, 130 (21)
  • [42] Superfield approach to topological features of non-Abelian gauge theory
    Malik, RP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (41): : 8817 - 8830
  • [43] Non-Abelian tensor gauge fields
    George Savvidy
    Proceedings of the Steklov Institute of Mathematics, 2011, 272 : 201 - 215
  • [44] On the Non-abelian Tensor Product of Groups
    Moghaddam, Mohammad Reza R.
    Mirzaei, Fateme
    ALGEBRA COLLOQUIUM, 2011, 18 (03) : 429 - 436
  • [45] Non-Abelian tensor gauge fields
    Savvidy, George
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 272 (01) : 201 - 215
  • [46] THE TOPOLOGICAL MEANING OF NON-ABELIAN ANOMALIES
    ALVAREZGAUME, L
    GINSPARG, P
    NUCLEAR PHYSICS B, 1984, 243 (03) : 449 - 474
  • [47] Topological Entanglement in Abelian and Non-Abelian Excitation Eigenstates
    Papic, Z.
    Bernevig, B. A.
    Regnault, N.
    PHYSICAL REVIEW LETTERS, 2011, 106 (05)
  • [48] Non-Abelian Fractionalization in Topological Minibands
    Reddy, Aidan P.
    Paul, Nisarga
    Abouelkomsan, Ahmed
    Fu, Liang
    PHYSICAL REVIEW LETTERS, 2024, 133 (16)
  • [49] THE LAYER PHASE IN THE NONISOTROPIC ABELIAN AND NON-ABELIAN GAUGE-MODEL
    FU, YK
    HUANG, LX
    ZHANG, DX
    PHYSICS LETTERS B, 1994, 335 (01) : 65 - 70
  • [50] Non-Abelian Berry phase for open quantum systems: Topological protection versus geometric dephasing
    Snizhko, Kyrylo
    Egger, Reinhold
    Gefen, Yuval
    PHYSICAL REVIEW B, 2019, 100 (08)