Financial Forecasting With α-RNNs: A Time Series Modeling Approach

被引:11
|
作者
Dixon, Matthew [1 ,2 ]
London, Justin [2 ]
机构
[1] IIT, Dept Appl Math, Chicago, IL 60616 USA
[2] IIT, Stuart Sch Business, Chicago, IL 60616 USA
关键词
recurrent neural networks; exponential smoothing; bitcoin; time series modeling; high frequency trading;
D O I
10.3389/fams.2020.551138
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The era of modern financial data modeling seeks machine learning techniques which are suitable for noisy and non-stationary big data. We demonstrate how a general class of exponential smoothed recurrent neural networks (alpha-RNNs) are well suited to modeling dynamical systems arising in big data applications such as high frequency and algorithmic trading. Application of exponentially smoothed RNNs to minute level Bitcoin prices and CME futures tick data, highlight the efficacy of exponential smoothing for multi-step time series forecasting. Our alpha-RNNs are also compared with more complex, "black-box", architectures such as GRUs and LSTMs and shown to provide comparable performance, but with far fewer model parameters and network complexity.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Predictive Patterns and Market Efficiency: A Deep Learning Approach to Financial Time Series Forecasting
    Vukovic, Darko B.
    Radenkovic, Sonja D.
    Simeunovic, Ivana
    Zinovev, Vyacheslav
    Radovanovic, Milan
    MATHEMATICS, 2024, 12 (19)
  • [42] Modeling financial interval time series
    Lin, Liang-Ching
    Sun, Li-Hsien
    PLOS ONE, 2019, 14 (02):
  • [43] The modeling and analysis of financial time series
    Case, J
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (05): : 401 - 411
  • [44] Position-Based Content Attention for Time Series Forecasting with Sequence-to-Sequence RNNs
    Cinar, Yagmur Gizem
    Mirisaee, Hamid
    Goswami, Parantapa
    Gaussier, Eric
    Ait-Bachir, Ali
    Strijov, Vadim
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 533 - 544
  • [45] Cooperative Optimization for Efficient Financial Time Series Forecasting
    Nayak, S. C.
    Misra, B. B.
    Behera, H. S.
    2014 INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2014, : 124 - 129
  • [46] Multivariate Dynamic Kernels for Financial Time Series Forecasting
    Pena, Mauricio
    Arratia, Argimiro
    Belanche, Lluis A.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 336 - 344
  • [47] Forecasting Financial Time Series with Multiple Kernel Learning
    Fabregues, Luis
    Arratia, Argimiro
    Belanche, Lluis A.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 176 - 187
  • [48] Support Vector Regression for financial time series forecasting
    Hao, Wei
    Yu, Songnian
    KNOWLEDGE ENTERPRISE: INTELLIGENT STRATEGIES IN PRODUCT DESIGN, MANUFACTURING, AND MANAGEMENT, 2006, 207 : 825 - +
  • [49] Multivariate Financial Time Series Forecasting with Deep Learning
    Martelo, Sebastian
    Leon, Diego
    Hernandez, German
    APPLIED COMPUTER SCIENCES IN ENGINEERING, WEA 2022, 2022, 1685 : 160 - 169
  • [50] Data Driven Financial Time-Series Forecasting
    Zhong, Qiang
    Li, Dan
    SEVENTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, VOLS I-III: UNLOCKING THE FULL POTENTIAL OF GLOBAL TECHNOLOGY, 2008, : 1744 - 1749