Background and objective: Non-invasive and robust identification of salvageable tissue (penumbra) is crucial for interventional stroke therapy. Besides identifying stroke injury as a whole, the ability to automatically differentiate core and penumbra tissues, using both diffusion and perfusion magnetic resonance imaging (MRI) sequences is essential for ischemic stroke treatment. Method: A fully automated and novel one-shot multi-view iterative random walker (MIRW) method with an automated injury seed point detection is developed for lesion delineation. MIRW utilizes the heirarchical decomposition of multi-sequence MRI physical properties of the underlying tissue within the lesion to maximize the inter-class variations of the volumetric histogram to estimate the probable seed points. These estimates are further utilized to conglomerate the lesion estimations iteratively from axial, coronal and sagittal MRI volumes for a computationally efficient segmentation and quantification of salvageable and necrotic tissues from multisequence MRI. Results: Comprehensive experimental analysis of MIRW is performed on three challenging adult(sub-)acute ischemic stroke datasets using performance measures like precision, sensitivity, specificity and Dice similarity score (DSC), which are computed with respect to the manual ground-truth. Comparison with existing methods: MIRW method resulted in a high DSC of 83.5% in a very less computational time of 98.23 s/volume, which is a significant improvement on the ISLES benchmark dataset for penumbra detection, compared to the state-of-the-art techniques. Conclusion: Quantitative measures demonstrate the promising potential of MIRW for computational analysis of adult stroke and quantifying penumbra in stroke patients which is essential for selecting the good candidates for recanalization.