Food chain dynamics in the chemostat

被引:44
|
作者
Boer, MP [1 ]
Kooi, BW [1 ]
Kooijman, SALM [1 ]
机构
[1] Free Univ Amsterdam, Dept Theoret Biol, NL-1081 HV Amsterdam, Netherlands
关键词
food chain; chemostat; global bifurcation; boundary crisis; heteroclinic tangency; homoclinic tangency; one-dimensional map; escape mechanism;
D O I
10.1016/S0025-5564(98)00010-8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The asymptotic behavior of a tri-trophic food chain model in the chemostat is studied. The Monod-Herbert growth model is used for all trophic levels. The analysis is carried out numerically, by finding both local and global bifurcations of equilibria and of limit cycles with respect to two chemostat control parameters: the dilution rate of the chemostat and the concentration of input substrate. It is shown that the bifurcation structure of the food chain model has much in common with the bifurcation structure of a one-dimensional map with two turning points. This map is used to explain how attractors are created and destroyed under variation of the bifurcation parameters. It is shown that low as well as high concentration of input substrate can lead to extinction of the highest trophic level. (C) 1998 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:43 / 62
页数:20
相关论文
共 50 条
  • [21] CANARD CYCLE IN A SLOW-FAST BITROPHIC FOOD CHAIN MODEL IN CHEMOSTAT
    Li, Jun
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (03): : 1360 - 1373
  • [22] Bifurcation and chaos of Tessiet type food chain chemostat with periodically varying substrate
    Pang, Guoping
    Liang, Yanlai
    Wang, Fengyan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 44 (03) : 674 - 690
  • [23] Stationary distribution of a stochastic food chain chemostat model with general response functions
    Gao, Miaomiao
    Jiang, Daqing
    APPLIED MATHEMATICS LETTERS, 2019, 91 : 151 - 157
  • [24] Asymptotic behavior of a Lotka-Volterra food chain stochastic model in the Chemostat
    Sun, Mingjuan
    Dong, Qinglai
    Wu, Jing
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (04) : 645 - 661
  • [25] Bifurcation and chaos in a Monod type food chain chemostat with pulsed input and washout
    Wang, Fengyan
    Hao, Chunping
    Chen, Lansun
    CHAOS SOLITONS & FRACTALS, 2007, 31 (04) : 826 - 839
  • [26] Remarks on food chain dynamics
    Kuznetsov, YA
    Rinaldi, S
    MATHEMATICAL BIOSCIENCES, 1996, 134 (01) : 1 - 33
  • [27] Study of a Monod-Haldene type food chain chemostat with pulsed substrate
    Wang, Fengyan
    Pang, Guoping
    Chen, Lansun
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (01) : 210 - 226
  • [28] Analysis of a Beddington-DeAngelis food chain chemostat with periodically varying dilution rate
    Wang, Fengyan
    Pang, Guoping
    Lu, Zhengyi
    CHAOS SOLITONS & FRACTALS, 2009, 40 (04) : 1609 - 1615
  • [29] Threshold behavior of a stochastic Lotka-Volterra food chain chemostat model with jumps
    Gao, Miaomiao
    Jiang, Daqing
    Hayat, Tasawar
    Alsaedi, Ahmed
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 : 191 - 203
  • [30] Study of Lotka-volterra food chain chemostat with periodically varying dilution rate
    Guoping Pang
    Fengyan Wang
    Lansun Chen
    Journal of Mathematical Chemistry, 2008, 43 : 901 - 913