GRAPHS WHOSE Aα-SPECTRAL RADIUS DOES NOT EXCEED 2

被引:8
|
作者
Wang, Jian Feng [1 ]
Wang, Jing [2 ]
Liu, Xiaogang [2 ]
Belardo, Francesco [3 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Peoples R China
[2] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
[3] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, I-80126 Naples, Italy
基金
中国国家自然科学基金;
关键词
A(alpha)-matrix; Smith graphs; limit point; spectral radius; index; SPECTRAL-RADIUS;
D O I
10.7151/dmgt.2288
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(G) and D(G) be the adjacency matrix and the degree matrix of a graph G, respectively. For any real alpha is an element of [0; 1], we consider A(alpha)(G) = D-alpha(G) + (1 - alpha)A(G) as a graph matrix, whose largest eigenvalue is called the A(alpha)-spectral radius of G. We first show that the smallest limit point for the A(alpha)-spectral radius of graphs is 2, and then we characterize the connected graphs whose A(alpha)-spectral radius is at most 2. Finally, we show that all such graphs, with four exceptions, are determined by their A(alpha)-spectra.
引用
收藏
页码:677 / 690
页数:14
相关论文
共 50 条
  • [31] Spectral radius and Hamiltonicity of graphs
    Fiedler, Miroslav
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2170 - 2173
  • [32] Cleavages of graphs: the spectral radius
    de la Pena, Jose A.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (07): : 641 - 649
  • [33] On the spectral radius of bipartite graphs
    Fan, Dandan
    Wang, Guoping
    Zao, Yuying
    UTILITAS MATHEMATICA, 2019, 113 : 149 - 158
  • [34] The Aα-spectral radius of dense graphs
    Liu, Muhuo
    Chen, Chaohui
    Guo, Shu-Guang
    Peng, Jiarong
    Chen, Tianyuan
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (06): : 1044 - 1053
  • [35] THE LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Li, Jianxi
    Shiu, Wai Chee
    Chang, An
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 835 - 847
  • [36] Toughness and spectral radius in graphs
    Chen, Yuanyuan
    Fan, Dandan
    Lin, Huiqiu
    arXiv, 2023,
  • [37] A note on the Aα-spectral radius of graphs
    Lin, Huiqiu
    Huang, Xing
    Xue, Jie
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 557 : 430 - 437
  • [38] SPECTRAL RADIUS AND HAMILTONICITY OF GRAPHS
    Yu, Guidong
    Fang, Yi
    Fan, Yizheng
    Cai, Gaixiang
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (04) : 951 - 974
  • [39] The Laplacian spectral radius of graphs
    Jianxi Li
    Wai Chee Shiu
    An Chang
    Czechoslovak Mathematical Journal, 2010, 60 : 835 - 847
  • [40] Spectral radius and matchings in graphs
    Suil, O.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 316 - 324