What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers

被引:213
|
作者
Duty, Chad [1 ,2 ]
Ajinjeru, Christine [1 ]
Kishore, Vidya [1 ]
Compton, Brett [1 ]
Hmeidat, Nadim [1 ]
Chen, Xun [2 ]
Liu, Peng [2 ]
Hassen, Ahmed Arabi [2 ]
Lindahl, John [2 ]
Kunc, Vlastimil [1 ,2 ,3 ]
机构
[1] Univ Tennessee, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Oak Ridge, TN 37830 USA
[3] Purdue Univ, W Lafayette, IN 47907 USA
关键词
3D printing; Extrusion; Fused filament fabrication (FFF); Thermoplastic polymers; Viscoelastic model; FUSED DEPOSITION; PROCESSING CONDITIONS; CARBON-FIBER; COMPOSITES; STRENGTH; BEHAVIOR;
D O I
10.1016/j.jmapro.2018.08.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article presents a practical model for evaluating polymer feedstock materials as candidates for 3D printing across a variety of extrusion-based platforms. In order for a material to be successfully utilized for 3D printing operations, a series of fundamental conditions must be met. First, pressure-driven extrusion must occur through a given diameter nozzle at a specified flow rate. Second, the extruded material must form and sustain the desired shape. Third, the extruded structure must be able to bridge a specified gap and serve as a mechanically sound foundation for successive deposits. Finally, the deposited structure must be dimensionally stable during the transition to the final state (i.e. fully cured at room temperature). This article presents a framework for extrusionbased printing and a simple viscoelastic model for each of these conditions based on the rheological and thermophysical properties of the candidate material and the processing parameters of the extrusion-based deposition platform. The model is demonstrated to be a useful tool for the evaluation of example test cases including: high temperature thermoplastics (polyphenylsulfone), fiber reinforced thermoplastics (acrylonitrile butadiene styrene), low-viscosity thermosets (epoxy resins), and thermoplastics with a high coefficient of thermal expansion (polypropylene).
引用
收藏
页码:526 / 537
页数:12
相关论文
共 50 条
  • [11] Printability of a Cellulose Derivative for Extrusion-Based 3D Printing: The Application on a Biodegradable Support Material
    Cheng Yiliang
    Shi Xiaolei
    Jiang Xuepeng
    Wang Xiaohui
    Qin Hantang
    FRONTIERS IN MATERIALS, 2020, 7
  • [12] Extrusion-based 3D printing of gelatin methacryloyl with nanocrystalline hydroxyapatite
    Das, Soumitra
    Basu, Bikramjit
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2022, 19 (02) : 924 - 938
  • [13] Extrusion-Based 3D Printing Applications of PLA Composites: A Review
    Tumer, Eda Hazal
    Erbil, Husnu Yildirim
    COATINGS, 2021, 11 (04)
  • [14] Continuous Fiber Reinforcement for Extrusion-Based 3D Concrete Printing
    Neef, Tobias
    Mechtcherine, Viktor
    TRANSFORMING CONSTRUCTION: ADVANCES IN FIBER REINFORCED CONCRETE, BEFIB 2024, 2024, 54 : 802 - 809
  • [15] Structural failure during extrusion-based 3D printing processes
    R. J. M. Wolfs
    A. S. J. Suiker
    The International Journal of Advanced Manufacturing Technology, 2019, 104 : 565 - 584
  • [16] A green extrusion-based 3D printing of hierarchically porous aluminum
    Tang, Shiyan
    Yang, Yaru
    Yang, Li
    Fan, Zitian
    POWDER TECHNOLOGY, 2022, 399
  • [17] Extrusion-Based 3D Printing for Pharmaceuticals: Contemporary Research and Applications
    Algahtani, Mohammed S.
    Mohammed, Abdul Aleem
    Ahmad, Javed
    CURRENT PHARMACEUTICAL DESIGN, 2018, 24 (42) : 4991 - 5008
  • [18] Extrusion-based 3D printing of biodegradable hydrogels for biomedical applications
    Highley, Christopher
    Ouyang, Liliang
    Rodell, Christopher
    Burdick, Jason
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [19] Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing
    Serex, Ludovic
    Bertsch, Arnaud
    Renaud, Philippe
    MICROMACHINES, 2018, 9 (02)
  • [20] Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications
    Placone, Jesse K.
    Engler, Adam J.
    ADVANCED HEALTHCARE MATERIALS, 2018, 7 (08)