On α-total domination in graphs

被引:6
|
作者
Henning, Michael A. [1 ]
Rad, Nader Jafari [2 ]
机构
[1] Univ Johannesburg, Dept Math, ZA-2006 Auckland Pk, South Africa
[2] Shahrood Univ Technol, Dept Math, Shahrood, Iran
基金
新加坡国家研究基金会;
关键词
Domination; Total domination; alpha-domination; SMALL TRANSVERSALS; HYPERGRAPHS; NUMBER;
D O I
10.1016/j.dam.2011.11.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph with no isolated vertex. A subset of vertices S is a total dominating set if every vertex of G is adjacent to some vertex of S. For some alpha with 0 < alpha <= 1, a total dominating set S in G is an alpha-total dominating set if for every vertex nu is an element of V \ S, vertical bar N(upsilon) boolean AND S vertical bar >= alpha vertical bar N(upsilon)vertical bar. The minimum cardinality of an alpha-total dominating set of G is called the alpha-total domination number of G. In this paper, we study alpha-total domination in graphs. We obtain several results and bounds for the alpha-total domination number of a graph G. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1143 / 1151
页数:9
相关论文
共 50 条
  • [41] Total domination in inflated graphs
    Henning, Michael A.
    Kazemi, Adel P.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) : 164 - 169
  • [42] Total Domination in Partitioned Graphs
    Frendrup, Allan
    Vestergaard, Preben Dahl
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2009, 25 (02) : 181 - 196
  • [43] Total Domination in Regular Graphs
    Hoppen, Carlos
    Mansan, Giovane
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 523 - 533
  • [44] Girth and Total Domination in Graphs
    Henning, Michael A.
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2012, 28 (02) : 199 - 214
  • [45] Total domination stability in graphs
    Henning, Michael A.
    Krzywkowski, Marcin
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 246 - 255
  • [46] Double total domination of graphs
    Gimbel, J
    Maheo, M
    Virlouvet, C
    DISCRETE MATHEMATICS, 1997, 165 : 343 - 351
  • [47] Total domination in generalized θ graphs and ladder graphs
    Song, Xiaoxin
    Sun, Gaihong
    Liu, Lijia
    ARS COMBINATORIA, 2016, 129 : 71 - 93
  • [48] From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs
    Almerich-Chulia, Ana
    Cabrera Martinez, Abel
    Hernandez Mira, Frank Angel
    Martin-Concepcion, Pedro
    SYMMETRY-BASEL, 2021, 13 (07):
  • [49] Relating the total {2}-domination number with the total domination number of graphs
    Villamar, I. Rios
    Cabrera-Martinez, A.
    Sanchez, J. L.
    Sigarreta, J. M.
    DISCRETE APPLIED MATHEMATICS, 2023, 333 : 90 - 95
  • [50] Remarks on restrained domination and total restrained domination in graphs
    Bohdan Zelinka
    Czechoslovak Mathematical Journal, 2005, 55 : 393 - 396