Functions on discrete sets holomorphic in the sense of Isaacs, or monodiffric functions of the first kind

被引:7
|
作者
Kiselman, CO [1 ]
机构
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2005年 / 48卷 / Suppl 1期
关键词
monodiffric functions of the first kind; discrete holomorphic functions; functions holomorphic in the sense of Isaacs; discrete Cauchy-Riemann operators; domains of holomorphy; Hartogs' phenomenon;
D O I
10.1007/BF02884698
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study discrete analogues of holomorphic functions of one and two variables, especially those that were called monodiffric functions of the first kind by Rufus Isaacs. Discrete analogues of the Cauchy-Riemann operators, domains of holomorphy in one discrete variable, and the Hartogs phenomenon in two discrete variables are investigated.
引用
收藏
页码:86 / 96
页数:11
相关论文
共 50 条
  • [31] Removable sets for intrinsic metric and for holomorphic functions
    Kalmykov, Sergei
    Kovalev, Leonid V.
    Rajala, Tapio
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (02): : 751 - 772
  • [32] Convex functions on discrete sets
    Kiselman, CO
    COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2004, 3322 : 443 - 457
  • [33] Separately locally holomorphic functions and their singular sets
    Bang, Pham Hien
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2008, 51 (02): : 103 - 108
  • [34] Removable sets for intrinsic metric and for holomorphic functions
    Sergei Kalmykov
    Leonid V. Kovalev
    Tapio Rajala
    Journal d'Analyse Mathématique, 2019, 139 : 751 - 772
  • [36] Bounded Discrete Holomorphic Functions on the Hyperbolic Plane
    I. A. Dynnikov
    Proceedings of the Steklov Institute of Mathematics, 2018, 302 : 186 - 197
  • [37] Bounded Discrete Holomorphic Functions on the Hyperbolic Plane
    Dynnikov, I. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 302 (01) : 186 - 197
  • [38] Spectrum of banach valued holomorphic functions and polar sets
    Taki, Zakaria
    Nokrane, Abdelkrim
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (22): : 7650 - 7655
  • [39] APPROXIMATION BY HOLOMORPHIC FUNCTIONS ON CERTAIN PRODUCT SETS IN CN
    WEINSTOCK, BM
    PACIFIC JOURNAL OF MATHEMATICS, 1972, 43 (03) : 811 - 822
  • [40] On holomorphic functions with cluster sets of finite linear measure
    Globevnik, Josip
    Kalaj, David
    MATHEMATISCHE ZEITSCHRIFT, 2018, 289 (1-2) : 355 - 360