Lung Parenchyma Segmentation: Fully Automated and Accurate Approach for Thoracic CT Scan Images

被引:10
|
作者
Kumar, S. Pramod [1 ]
Latte, Mrityunjaya V. [2 ]
机构
[1] Kalpataru Inst Technol, Tiptur 572201, Karnataka, India
[2] JSS Acad Tech Educ, Bengaluru 560060, Karnataka, India
关键词
Bidirectional chain code; Mid-point; Pulmonary parenchyma; Segmentation; Thoracic CT slice; BORDER MARCHING ALGORITHM; PULMONARY NODULES; CHEST CT; PROBABILISTIC ATLAS; SET;
D O I
10.1080/03772063.2018.1494519
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computer-aided detection and diagnosis (CAD) of lung-related diseases will be helpful for early detection. Lung parenchyma segmentation is considered as a prerequisite for most of CAD systems. The available traditional methods for lung parenchyma segmentation are not accurate because the nodules that adhere to the lung pleura are recognized as fat. This paper proposes an automated lung parenchyma segmentation for accurate detection of lung nodules, mainly juxtapleural nodules. The proposed method includes the bidirectional chain code to improve the segmentation, and the support vector machine classifier is used to avoid false inclusion of regions. The proposed method is verified on various datasets for robustness of the algorithm. This automated method provides an accuracy of 97% in segmentation compared to ground truth results obtained by experts, which drastically reduces the complexity and intervention of a radiologist.
引用
收藏
页码:370 / 383
页数:14
相关论文
共 50 条
  • [21] Automatic Lung Parenchyma Segmentation of CT Images Based on Matrix Grey Incidence
    Liu, Caixia
    Xie, Wanli
    JOURNAL OF GREY SYSTEM, 2021, 33 (03): : 116 - 129
  • [22] Accurate lung segmentation for X-ray CT images
    Gao, Qixin
    Wang, ShengJun
    Zhao, Dazhe
    Liu, Jiren
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2007, : 275 - +
  • [23] A Fully Automatic Method for Lung Parenchyma Segmentation and Repairing
    Ying Wei
    Guo Shen
    Juan-juan Li
    Journal of Digital Imaging, 2013, 26 : 483 - 495
  • [24] A Fully Automatic Method for Lung Parenchyma Segmentation and Repairing
    Wei, Ying
    Shen, Guo
    Li, Juan-juan
    JOURNAL OF DIGITAL IMAGING, 2013, 26 (03) : 483 - 495
  • [25] Deficiencies of Lung Segmentation Techniques using CT Scan Images for CAD
    Memon, Nisar Ahmed
    Mirza, Anwar Majid
    Gilani, S. A. M.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 14, 2006, 14 : 234 - +
  • [26] Effectual lung segmentation for CAD systems using CT scan images
    Khawaja, MA
    Aziz, MZ
    Iqbal, N
    INMIC 2004: 8th International Multitopic Conference, Proceedings, 2004, : 49 - 54
  • [27] A Texton-Based Approach for the Classification of Lung Parenchyma in CT Images
    Gangeh, Mehrdad J.
    Sorensen, Lauge
    Shaker, Saher B.
    Kamel, Mohamed S.
    de Bruijne, Marleen
    Loog, Marco
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT III, 2010, 6363 : 595 - +
  • [28] GA and Morphology based automated Segmentation of Lungs from CT scan Images
    Jaffar, M. Arfan
    Hussain, Ayyaz
    Nazir, M.
    Mirza, Anwar M.
    Chaudhry, Asmatullah
    2008 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING CONTROL & AUTOMATION, VOLS 1 AND 2, 2008, : 265 - +
  • [29] Volumetric lung nodule segmentation in thoracic CT scan using freehand sketch
    Pramod Kumar, S.
    Latte, Mrityunjaya V.
    Siri, Sangeeta K.
    IET IMAGE PROCESSING, 2020, 14 (14) : 3456 - 3462
  • [30] Fully Automated Thrombus Segmentation on CT Images of Patients with Acute Ischemic Stroke
    Mojtahedi, Mahsa
    Kappelhof, Manon
    Ponomareva, Elena
    Tolhuisen, Manon
    Jansen, Ivo
    Bruggeman, Agnetha A. E.
    Dutra, Bruna G.
    Yo, Lonneke
    LeCouffe, Natalie
    Hoving, Jan W.
    van Voorst, Henk
    Brouwer, Josje
    Terreros, Nerea Arrarte
    Konduri, Praneeta
    Meijer, Frederick J. A.
    Appelman, Auke
    Treurniet, Kilian M.
    Coutinho, Jonathan M.
    Roos, Yvo
    van Zwam, Wim
    Dippel, Diederik
    Gavves, Efstratios
    Emmer, Bart J.
    Majoie, Charles
    Marquering, Henk
    DIAGNOSTICS, 2022, 12 (03)