Optimal eavesdropping on quantum key distribution without quantum memory

被引:3
|
作者
Bocquet, Aurelien [1 ,2 ]
Alleaume, Romain [1 ,2 ]
Leverrier, Anthony [3 ]
机构
[1] Inst Telecom Telecom ParisTech, F-75013 Paris, France
[2] CNRS LTCI, F-75013 Paris, France
[3] ICFO Inst Ciencies Fotoniques, Castelldefels 08860, Barcelona, Spain
关键词
UNCONDITIONAL SECURITY; CRYPTOGRAPHY; PROOF;
D O I
10.1088/1751-8113/45/2/025305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the security of the BB84 (Bennett and Brassard 1984 Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing pp 175-9), six-state (Bruss 1998 Phys. Rev. Lett. 81 3018) and SARG04 (Scarani et al 2004 Phys. Rev. Lett. 92 057901) quantum key distribution protocols when the eavesdropper does not have access to a quantum memory. In this case, Eve's most general strategy is to measure her ancilla with an appropriate positive operator-valued measure designed to take advantage of the post-measurement information that will be released during the sifting phase of the protocol. After an optimization on all the parameters accessible to Eve, our method provides us with new bounds for the security of six-state and SARG04 against a memoryless adversary. In particular, for the six-state protocol we show that the maximum quantum bit error ratio for which a secure key can be extracted is increased from 12.6% (for collective attacks) to 20.4% with the memoryless assumption.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Optimal eavesdropping in quantum cryptography .2. A quantum circuit
    Griffiths, RB
    Niu, CS
    PHYSICAL REVIEW A, 1997, 56 (02): : 1173 - 1176
  • [22] Optimal protocols and tradeoffs in quantum key distribution
    Renes, JM
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 327 - 330
  • [23] Optimal Device Independent Quantum Key Distribution
    Kamaruddin, S.
    Shaari, J. S.
    SCIENTIFIC REPORTS, 2016, 6
  • [24] Quantum key distribution without alternative measurements
    Cabello, Adan
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (05): : 523121 - 523124
  • [25] Optimal Planning of a Quantum Key Distribution System
    Zavala, Mathias
    Baran, Benjamin
    PROCEEDINGS OF THE 2022 LATIN AMERICA NETWORKING CONFERENCE, LANC 2022, 2022, : 26 - 33
  • [26] More optimal relativistic quantum key distribution
    Georgi Bebrov
    Scientific Reports, 12
  • [27] Quantum key distribution without alternative measurements
    Cabello, A
    PHYSICAL REVIEW A, 2000, 61 (05):
  • [28] More optimal relativistic quantum key distribution
    Bebrov, Georgi
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [29] Optimal Device Independent Quantum Key Distribution
    S. Kamaruddin
    J. S. Shaari
    Scientific Reports, 6
  • [30] Enhancing eavesdropping detection in quantum key distribution using disentropy measure of randomness
    Castro, G. S.
    Ramos, R., V
    QUANTUM INFORMATION PROCESSING, 2022, 21 (02)