Nonlinear waves in PT-symmetric systems

被引:915
|
作者
Konotop, Vladimir V. [1 ,2 ]
Yang, Jianke [3 ]
Zezyulin, Dmitry A. [1 ,2 ]
机构
[1] Univ Lisbon, Ctr Fis Teor & Computac, Campo Grande,Ed C8, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, Dept Fis, Campo Grande,Ed C8, P-1749016 Lisbon, Portugal
[3] Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USA
基金
美国国家科学基金会;
关键词
NON-HERMITIAN HAMILTONIANS; PARITY-TIME SYMMETRY; NONRECIPROCAL LIGHT-PROPAGATION; COMPLEX PERIODIC POTENTIALS; MULTI-ROGUE WAVE; OPTICAL LATTICES; DEFECT SOLITONS; GAP SOLITONS; PSEUDO-HERMITICITY; DISCRETE SOLITONS;
D O I
10.1103/RevModPhys.88.035002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent progress on nonlinear properties of parity-time (PT)-symmetric systems is comprehensively reviewed in this article. PT symmetry started out in non-Hermitian quantum mechanics, where complex potentials obeying PT symmetry could exhibit all-real spectra. This concept later spread out to optics, Bose-Einstein condensates, electronic circuits, and many other physical fields, where a judicious balancing of gain and loss constitutes a PT-symmetric system. The natural inclusion of nonlinearity into these PT systems then gave rise to a wide array of new phenomena which have no counterparts in traditional dissipative systems. Examples include the existence of continuous families of nonlinear modes and integrals of motion, stabilization of nonlinear modes above PT-symmetry phase transition, symmetry breaking of nonlinear modes, distinctive soliton dynamics, and many others. In this article, nonlinear PT-symmetric systems arising from various physical disciplines are presented, nonlinear properties of these systems are thoroughly elucidated, and relevant experimental results are described. In addition, emerging applications of PT symmetry are pointed out.
引用
收藏
页数:59
相关论文
共 50 条
  • [31] Unavoidability of nonclassicality loss in PT-symmetric systems
    Perina, Jan, Jr.
    Miranowicz, Adam
    Kalaga, Joanna K.
    Leonski, Wieslaw
    PHYSICAL REVIEW A, 2023, 108 (03)
  • [32] Embedded States in the Continuum for PT-Symmetric Systems
    Molina, Mario I.
    Kivshar, Yuri S.
    STUDIES IN APPLIED MATHEMATICS, 2014, 133 (03) : 337 - 350
  • [33] Random matrix ensembles for PT-symmetric systems
    Graefe, Eva-Maria
    Mudute-Ndumbe, Steve
    Taylor, Matthew
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (38)
  • [34] Bragg solitons in nonlinear PT-symmetric periodic potentials
    Miri, Mohammad-Ali
    Aceves, Alejandro B.
    Kottos, Tsampikos
    Kovanis, Vassilios
    Christodoulides, Demetrios N.
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [35] Spread complexity and localization in PT-symmetric systems
    Bhattacharya, Aranya
    Das, Rathindra Nath
    Dey, Bidyut
    Erdmenger, Johanna
    PHYSICAL REVIEW B, 2024, 110 (06)
  • [36] Measurement of photon correlations in PT-symmetric systems
    Klauck, F.
    Teuber, L.
    Ornigotti, M.
    Heinrich, M.
    Scheel, S.
    Szameit, A.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [37] Quantum description of a PT-symmetric nonlinear directional coupler
    Perinova, V
    Luks, A.
    Krepelka, J.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (04) : 855 - 861
  • [38] Dynamics of rogue waves in the partially PT-symmetric nonlocal Davey-Stewartson systems
    Yang, Bo
    Chen, Yong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 : 287 - 303
  • [39] Nonlinear quantum dynamics in a PT-symmetric double well
    Haag, Daniel
    Dast, Dennis
    Loehle, Andreas
    Cartarius, Holger
    Main, Joerg
    Wunner, Guenter
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [40] Nonlinear nonuniform PT-symmetric Bragg grating structures
    Raja, S. Vignesh
    Govindarajan, A.
    Mahalingam, A.
    Lakshmanan, M.
    PHYSICAL REVIEW A, 2019, 100 (05)