On matching and total domination in graphs

被引:18
|
作者
Henning, Michael A. [2 ]
Kang, Liying [1 ]
Shan, Erfang [1 ]
Yeo, Anders [3 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Univ KwaZulu Natal, Sch Math Sci, ZA-3209 Pietermaritzburg, South Africa
[3] Univ London, Dept Comp Sci, Egham TW20 OEX, Surrey, England
关键词
claw-free graph; cubic graph; matching number; total domination number;
D O I
10.1016/j.disc.2006.10.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The matching number is the maximum cardinality of a matching of G, while the total domination number of G is the minimum cardinality of a total dominating set of G. In this paper, we investigate the relationships between the matching and total domination number of a graph. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number, and we show that every k-regular graph with k >= 3 has total domination number at most its matching number. In general, we show that no minimum degree is sufficient to guarantee that the matching number and total domination number are comparable. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2313 / 2318
页数:6
相关论文
共 50 条
  • [21] Weak Total Domination in Graphs
    Chellali, Mustapha
    Rad, Nader Jafari
    UTILITAS MATHEMATICA, 2014, 94 : 221 - 236
  • [22] Signed Total Domination in Graphs
    邢化明
    孙良
    陈学刚
    Journal of Beijing Institute of Technology(English Edition), 2003, (03) : 319 - 321
  • [23] DOMINATION INTEGRITY OF TOTAL GRAPHS
    Vaidya, S. K.
    Shah, N. H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (01): : 117 - 126
  • [24] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [25] Chromatic total domination in graphs
    Balamurugan, S.
    Anitha, M.
    Eswari, M. Angala
    Kalaiselvi, S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (05): : 745 - 751
  • [26] Matching Transversal Edge Domination in Graphs
    Alwardi, Anwar
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (02): : 919 - 929
  • [27] Total mixed domination in graphs
    Kazemi, Adel P.
    Kazemnejad, Farshad
    Moradi, Somayeh
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 229 - 237
  • [28] Restricted total domination in graphs
    Henning, MA
    DISCRETE MATHEMATICS, 2004, 289 (1-3) : 25 - 44
  • [29] Disjunctive total domination in graphs
    Henning, Michael A.
    Naicker, Viroshan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (03) : 1090 - 1110
  • [30] Transversal total domination in graphs
    Nayaka, S.R.
    Alwardi, Anwar
    Puttaswamy
    1600, Charles Babbage Research Centre (112): : 231 - 240