CONVERGENCE OF THE CONJUGATE GRADIENT METHOD WITH UNBOUNDED OPERATORS

被引:4
|
作者
Caruso, Noe [1 ,2 ]
Michelangeli, Alessandro [3 ,4 ]
机构
[1] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Gran Sasso Sci Inst GSSI, Viale Francesco Crispi 7, I-67100 Laquila, Italy
[3] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
[4] Univ Bonn, Hausdorff Ctr Math, Endenicher Allee 60, D-53115 Bonn, Germany
来源
OPERATORS AND MATRICES | 2022年 / 16卷 / 01期
关键词
Inverse linear problems; infinite-dimensional Hilbert space; ill-posed prob-lems; Krylov subspaces methods; conjugate gradient; self-adjoint operators; spectral measure; orthogonal polynomials; KRYLOV SUBSPACE METHODS; ILL-POSED PROBLEMS; ITERATIVE METHODS;
D O I
10.7153/oam-2022-16-05
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the framework of inverse linear problems on infinite-dimensional Hilbert space, we prove the convergence of the conjugate gradient iterates to an exact solution to the inverse problem in the most general case where the self-adjoint, non-negative operator is unbounded and with minimal, technically unavoidable assumptions on the initial guess of the iterative algorithm. The convergence is proved to always hold in the Hilbert space norm (error convergence), as well as at other levels of regularity (energy norm, residual, etc.) depending on the regularity of the iterates. We also discuss, both analytically and through a selection of numerical tests, the main features and differences of our convergence result as compared to the case, already available in the literature, where the operator is bounded.
引用
收藏
页码:35 / 68
页数:34
相关论文
共 50 条
  • [31] Convergence of Liu-Storey conjugate gradient method
    Shi, Zhen-Jun
    Shen, Jie
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 182 (02) : 552 - 560
  • [32] Global convergence of a spectral HS conjugate gradient method
    Du, Xianglin
    Liu, Jinkui
    CEIS 2011, 2011, 15
  • [33] ON THE RATE OF CONVERGENCE OF THE PRECONDITIONED CONJUGATE-GRADIENT METHOD
    AXELSSON, O
    LINDSKOG, G
    NUMERISCHE MATHEMATIK, 1986, 48 (05) : 499 - 523
  • [34] Global convergence of a descent nonlinear conjugate gradient method
    Li, Xiaoyong
    Liu, Hailin
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 1: ENGINEERING COMPUTATION AND FINITE ELEMENT ANALYSIS, 2010, : 79 - 84
  • [35] Global convergence of a mixed conjugate gradient method including the HS method
    Zheng, Xi-feng
    Tian, Zhi-yuan
    Xiao, Li-li
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GAME THEORY AND APPLICATIONS, 2007, : 301 - 304
  • [36] Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators
    Janos Karatson
    Applications of Mathematics, 2005, 50 (3) : 277 - 290
  • [37] A note on conjugate gradient convergence
    Naiman, AE
    Babuska, IM
    Elman, HC
    NUMERISCHE MATHEMATIK, 1997, 76 (02) : 209 - 230
  • [38] A note on conjugate gradient convergence
    Numerische Mathematik, 76 (02):
  • [39] Global convergence of a modified LS nonlinear conjugate gradient method
    Liu, Jinkui
    Feng, Yuming
    CEIS 2011, 2011, 15
  • [40] GLOBALLY CONVERGENCE OF NONLINEAR CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED OPTIMIZATION
    Sellami, B.
    Belloufi, M.
    Chaib, Y.
    RAIRO-OPERATIONS RESEARCH, 2017, 51 (04) : 1101 - 1117